Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 21, 2004
Accepted March 30, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Degradation of Chlorophenol by Photocatalysts with Various Transition Metals
Dept. of Environ. Eng., Pukyong National University, Busan 608-737, Korea
leejk@pknu.ac.kr
Korean Journal of Chemical Engineering, May 2005, 22(3), 382-386(5), 10.1007/BF02719415
Download PDF
Abstract
In this research, the photocatalytic degradation of 4-chlorophenol (4-CP) in TiO2 aqueous suspension was studied. TiO2 photocatalysts were prepared by sol-gel method. The dominant anatase-structure on TiO2 particles was observed after calcining the TiO2 gel at 500 ℃ for 1 hr. Photocatalysts with various transition metals (Fe, Cu, Nd, Pd and Pt) loading were tested to evaluate the effect of transition metal impurities on photodegradation. The photocatalytic degradation in most cases follows first-order kinetics. The maximum photodegradation efficiency was obtained with TiO2 dosage of 0.4 g/L, retention time of 1 min and air flow rate of 2,500 cc/min. The photodegradation efficiency with Pt-TiO2 or Pd-TiO2 is higher than pure TiO2 powder. The optimal content value of Pt and Pd is 2 wt%. However, the photodegradation efficiency with Fe(1.0 wt%)-TiO2 and Cu(1.0 wt%)-TiO2 is lower than pure TiO2 powder.
References
Bideau M, Claudel B, Faure L, Kazouan H, J. Photochem. Photobiol. A-Chem., 67, 337 (1992)
Brezova V, Blazkova A, Borosova E, Ceppan M, Fiala R, J. Mol. Catal. A-Chem., 98, 109 (1995)
Chen D, Ray AK, Water Res., 32, 3223 (1998)
Ekabi HA, Serpone N, J. Phys. Chem., 92, 5726 (1988)
Kim JP, Korean J. Chem. Eng., 21(2), 385 (2004)
Ku Y, Leu RM, Lee KC, Water Res., 30, 2569 (1996)
Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812 (2003)
Li FB, Li XZ, Chemosphere, 48, 1103 (2002)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Matthews RW, J. Phys. Chem., 91, 3328 (1987)
Moonsiri M, Rangsunvigit P, Chavadej S, Gulari E, Chem. Eng. J., 97(2-3), 241 (2004)
Sclafani A, Herrmann JM, J. Phys. Chem., 100(32), 13655 (1996)
Theurich J, Lindner M, Bahnemann DW, Langmuir, 12(26), 6368 (1996)
Wu CY, Yue YH, Deng XY, Hua WM, Gao Z, Catal. Today, 93-95, 863 (2004)
Zhang T, Oyama TK, Horikoshi S, Hidaka H, Zhao J, Serpone N, Sol. Energy Mater. Sol. Cells, 73, 287 (2002)
Brezova V, Blazkova A, Borosova E, Ceppan M, Fiala R, J. Mol. Catal. A-Chem., 98, 109 (1995)
Chen D, Ray AK, Water Res., 32, 3223 (1998)
Ekabi HA, Serpone N, J. Phys. Chem., 92, 5726 (1988)
Kim JP, Korean J. Chem. Eng., 21(2), 385 (2004)
Ku Y, Leu RM, Lee KC, Water Res., 30, 2569 (1996)
Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812 (2003)
Li FB, Li XZ, Chemosphere, 48, 1103 (2002)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Matthews RW, J. Phys. Chem., 91, 3328 (1987)
Moonsiri M, Rangsunvigit P, Chavadej S, Gulari E, Chem. Eng. J., 97(2-3), 241 (2004)
Sclafani A, Herrmann JM, J. Phys. Chem., 100(32), 13655 (1996)
Theurich J, Lindner M, Bahnemann DW, Langmuir, 12(26), 6368 (1996)
Wu CY, Yue YH, Deng XY, Hua WM, Gao Z, Catal. Today, 93-95, 863 (2004)
Zhang T, Oyama TK, Horikoshi S, Hidaka H, Zhao J, Serpone N, Sol. Energy Mater. Sol. Cells, 73, 287 (2002)