Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 6, 2004
Accepted February 14, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulation and Analysis of Extractive Distillation Process in a Valve Tray Column Using the Rate Based Model
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, China
kannan@iitm.ac.in
Korean Journal of Chemical Engineering, May 2005, 22(3), 441-451(11), 10.1007/BF02719424
Download PDF
Abstract
Valve trays are becoming popular in the chemical process industries owing to their flexibility to handle a wide range of vapor throughputs. Using the rigorous rate based model, the importance of the non-equilibrium approach is demonstrated for a typical extractive distillation process in a Glitsch V-1 valve tray column. Simulation results based on an in-house developed code indicated that the rate based model predictions for a valve tray column operation showed significant differences relative to the equilibrium model. Even small errors in product purities translated into nonoptimal feed stage locations and inaccurate number of stages required. The counter-intuitive effect of high reflux ratio on separation is explained.
References
Aspen Plus® Steady State Simulation Version 10.1-0, Aspen Technology Inc.
Assabumrungrat S, Wongwattanasate D, Pavarajarn V, Praserthdam P, Arpornwichanop A, Goto S, Korean J. Chem. Eng., 21(6), 1139 (2004)
Cheny W, Kincaid D, Numerical Mathematics and Computing, 4th ed., Brooks/Cole Publishing Co., USA (1999)
Higler A, Chande R, Taylor R, Baur R, Krishna R, Comput. Chem. Eng., 28(10), 2021 (2004)
Hoffmann A, Noeres C, Gorak A, Chem. Eng. Process., 43, 383 (2004)
Kenig EY, Gorak A, Pyhalahti A, Jakobsson K, Aittamaa J, Sundmacher K, AIChE J., 50(2), 322 (2004)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
King CJ, Separation Processes, McGraw-Hill Book Company, New York (1980)
Kister HZ, Distillation Design, McGraw Hill, New York (1992)
Kloker M, Kenig EY, Schmitt M, Althaus K, Schoenmakers H, Markusse AP, Kwant G, Can. J. Chem. Eng., 81(3-4), 725 (2003)
Lee YS, Kim MG, Ha DM, Oda A, Ito C, Aragaki T, Mori H, Korean J. Chem. Eng., 14(5), 321 (1997)
Mortaheb HR, Kosuge H, Chem. Eng. Process., 43, 317 (2004)
Noeres C, Dadhe K, Gesthuisen R, Engell S, Gorak A, Chem. Eng. Process., 43, 421 (2004)
Peng JJ, Edgar TF, Eldridge RB, Chem. Eng. Sci., 58(12), 2671 (2003)
Powers MF, Vickery DJ, Arehole R, Taylor R, Comput. Chem. Eng., 12, 1229 (1988)
Pyhalahti A, Jakobsson K, Ind. Eng. Chem. Res., 42(24), 6188 (2003)
Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1988)
Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W, Object-Oriented Modeling and Design, Prentice-Hall of India, New Delhi (1997)
Sanpui D, Khanna A, Korean J. Chem. Eng., 20(4), 609 (2003)
Seader EJ, Henley JD, Separation Process Principles, John Wiley, Singapore (1998)
Scheffe RD, Weiland RH, Ind. Eng. Chem. Res., 26, 228 (1987)
Springer PAM, van der Molen S, Krishna R, Comput. Chem. Eng., 26(9), 1265 (2002)
Taylor R, Krishna R, Multi-component Mass Transfer, John Wiley & Sons, Inc., New York (1993)
Toor HL, AIChE J., 3, 198 (1957)
Toor HL, AIChE J., 10, 545 (1964)
Vadapalli A, Seader JD, Comput. Chem. Eng., 25(2-3), 445 (2001)
Wang JC, Henke GE, Hydrocarb. Process., 45(8), 155 (1966)
Assabumrungrat S, Wongwattanasate D, Pavarajarn V, Praserthdam P, Arpornwichanop A, Goto S, Korean J. Chem. Eng., 21(6), 1139 (2004)
Cheny W, Kincaid D, Numerical Mathematics and Computing, 4th ed., Brooks/Cole Publishing Co., USA (1999)
Higler A, Chande R, Taylor R, Baur R, Krishna R, Comput. Chem. Eng., 28(10), 2021 (2004)
Hoffmann A, Noeres C, Gorak A, Chem. Eng. Process., 43, 383 (2004)
Kenig EY, Gorak A, Pyhalahti A, Jakobsson K, Aittamaa J, Sundmacher K, AIChE J., 50(2), 322 (2004)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
King CJ, Separation Processes, McGraw-Hill Book Company, New York (1980)
Kister HZ, Distillation Design, McGraw Hill, New York (1992)
Kloker M, Kenig EY, Schmitt M, Althaus K, Schoenmakers H, Markusse AP, Kwant G, Can. J. Chem. Eng., 81(3-4), 725 (2003)
Lee YS, Kim MG, Ha DM, Oda A, Ito C, Aragaki T, Mori H, Korean J. Chem. Eng., 14(5), 321 (1997)
Mortaheb HR, Kosuge H, Chem. Eng. Process., 43, 317 (2004)
Noeres C, Dadhe K, Gesthuisen R, Engell S, Gorak A, Chem. Eng. Process., 43, 421 (2004)
Peng JJ, Edgar TF, Eldridge RB, Chem. Eng. Sci., 58(12), 2671 (2003)
Powers MF, Vickery DJ, Arehole R, Taylor R, Comput. Chem. Eng., 12, 1229 (1988)
Pyhalahti A, Jakobsson K, Ind. Eng. Chem. Res., 42(24), 6188 (2003)
Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1988)
Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W, Object-Oriented Modeling and Design, Prentice-Hall of India, New Delhi (1997)
Sanpui D, Khanna A, Korean J. Chem. Eng., 20(4), 609 (2003)
Seader EJ, Henley JD, Separation Process Principles, John Wiley, Singapore (1998)
Scheffe RD, Weiland RH, Ind. Eng. Chem. Res., 26, 228 (1987)
Springer PAM, van der Molen S, Krishna R, Comput. Chem. Eng., 26(9), 1265 (2002)
Taylor R, Krishna R, Multi-component Mass Transfer, John Wiley & Sons, Inc., New York (1993)
Toor HL, AIChE J., 3, 198 (1957)
Toor HL, AIChE J., 10, 545 (1964)
Vadapalli A, Seader JD, Comput. Chem. Eng., 25(2-3), 445 (2001)
Wang JC, Henke GE, Hydrocarb. Process., 45(8), 155 (1966)