Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 21, 2005
Accepted February 20, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Growth and Formation Mechanism of Sea Urchin-Like ZnO Nanostructures on Si
School of Chemical Engineering and Technology, Nanomaterials Processing Research Center, Chonbuk National University, Chonju 561-756, South Korea
Korean Journal of Chemical Engineering, May 2005, 22(3), 489-493(5), 10.1007/BF02719432
Download PDF
Abstract
Sea urchin-like nanostructures of ZnO consisting of ZnO nanowires with blunt faceted ends were grown on Si (100) substrates by oxidation of metallic Zn at 600 ℃. ZnO nanowires having a diameter of 30-60 nm and length of 2-4 μm were in similar shape with uniform diameter along its entire length with well faceted blunt ends. X-ray diffraction and transmission electron microscope analysis showed that the as-grown nanostructures were highly crystalline with wurtzite hexagonal structure having lattice constants of a=b=3.25 A and c=5.21 A. Room temperature photoluminescence (PL) measurements showed a weak near band-edge emission at 380 nm, but a strong green emission at 500-530 nm. A model for vapor-solid (VS) growth mechanism of ZnO nanowires was presented, in which nucleation of ZnO is crucial for the growth of the nanostructures.
References
Banerjee D, Lao JY, Wang DZ, Huang JY, Ren ZF, Steeves D, Kimball B, Sennett M, Appl. Phys. Lett., 83, 2061 (2003)
Banerjee D, Lao JY, Wang DZ, Huang JY, Steeves D, Kimball B, Ren ZF, Nanotechnology, 15, 404 (2004)
Gao PX, Ding Y, Wang ZL, Nano Lett., 3, 1315 (2003)
Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13, 113 (2001)
Huang Y, Duan X, Cui Y, Laubon LJ, Kim KH, Lieber CM, Science, 294, 1313 (2001)
Kim TY, Lee SH, Mo YH, Nahm KS, Kim JY, Suh EK, Kim M, Korean J. Chem. Eng., 21(3), 733 (2004)
Kind H, Yan H, Law M, Messer B, Yang P, Adv. Mater., 14, 158 (2002)
Lao LY, Wen JG, Ren ZF, Nano Lett., 2, 1287 (2002)
Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
Li Y, Meng GW, Zhang LD, Phillipp F, Appl. Phys. Lett., 76, 2011 (2000)
Lyu SC, Zhang Y, Lee CJ, Chem. Mater., 15, 3249 (2003)
Park WI, Kim DH, Jung SW, Yi GC, Appl. Phys. Lett., 80, 4232 (2002)
Park WI, Yi GC, Kim M, Pennycook SJ, Adv. Mater., 15, 526 (2003)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
Vayssieres L, Adv. Mater., 15, 464 (2003)
Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89 (1964)
Wu J, Liu S, Adv. Mater., 14, 526 (2003)
Yan H, He R, Pham J, Yang P, Adv. Mater., 15, 402 (2003)
Liu B, Zeng HC, J. Am. Chem. Soc., 125(15), 4430 (2003)
Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81, 757 (2001)
Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP, Appl. Phys. Lett., 83, 1689 (2003)
Banerjee D, Lao JY, Wang DZ, Huang JY, Steeves D, Kimball B, Ren ZF, Nanotechnology, 15, 404 (2004)
Gao PX, Ding Y, Wang ZL, Nano Lett., 3, 1315 (2003)
Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13, 113 (2001)
Huang Y, Duan X, Cui Y, Laubon LJ, Kim KH, Lieber CM, Science, 294, 1313 (2001)
Kim TY, Lee SH, Mo YH, Nahm KS, Kim JY, Suh EK, Kim M, Korean J. Chem. Eng., 21(3), 733 (2004)
Kind H, Yan H, Law M, Messer B, Yang P, Adv. Mater., 14, 158 (2002)
Lao LY, Wen JG, Ren ZF, Nano Lett., 2, 1287 (2002)
Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
Li Y, Meng GW, Zhang LD, Phillipp F, Appl. Phys. Lett., 76, 2011 (2000)
Lyu SC, Zhang Y, Lee CJ, Chem. Mater., 15, 3249 (2003)
Park WI, Kim DH, Jung SW, Yi GC, Appl. Phys. Lett., 80, 4232 (2002)
Park WI, Yi GC, Kim M, Pennycook SJ, Adv. Mater., 15, 526 (2003)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
Vayssieres L, Adv. Mater., 15, 464 (2003)
Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89 (1964)
Wu J, Liu S, Adv. Mater., 14, 526 (2003)
Yan H, He R, Pham J, Yang P, Adv. Mater., 15, 402 (2003)
Liu B, Zeng HC, J. Am. Chem. Soc., 125(15), 4430 (2003)
Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81, 757 (2001)
Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP, Appl. Phys. Lett., 83, 1689 (2003)