ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 11, 2005
Accepted May 6, 2005
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Methane Conversion over Nanostructured Pt/γ-Al2O3 Catalysts in Dielectric-Barrier Discharge

Department of Environmental Engineering, Donghae University, 119, Jiheung-dong, Donghae, Gangwon-do 240-713, Korea 1College of Environment & Applied Chemistry, Kyung Hee University, Yongin-si, Kyunggi-do 449-701, Korea 2Clean Technology Center, Korea Institute of Science and Technology, P.O. BOX 131, Cheongryang, Seoul 136-650, Korea 3School of Chemical Engineering, ChungBuk National University, San 48, Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk 371-763, Korea
ks7070@dreamwiz.com
Korean Journal of Chemical Engineering, July 2005, 22(4), 585-590(6), 10.1007/BF02706648
downloadDownload PDF

Abstract

Spherical nanostructured γ-Al2O3 granules were prepared by combining the modified Yoldas process and oil-drop method, followed by the Pt impregnation inside mesopores of the granules by incipient wetness method. Prepared Pt/γ-Al2O3 catalysts were reduced by novel method using plasma, which was named plasma assisted reduction (PAR), and then used for methane conversion in dielectric-barrier discharge (DBD). The effect of Pt loading, calcination temperature on methane conversion, and selectivities and yields of products were investigated. Prepared Pt/γ-Al2O3 catalysts were successfully reduced by PAR. The main products of methane conversion were the light alkanes such as C2H6, C3H8 and C4H10 when the catalytic plasma reaction was carried out with Pt/γ-Al2O3 catalyst. Methane conversion was in the range of 38-40% depending on Pt loading and calcination temperature. The highest yield of C2H6 was 12.7% with 1 wt% Pt/γ-Al2O3 catalysts after calcinations at 500 ℃.

References

Buelna G, Lin YS, Microporous Mesoporous Mater., 30, 359 (1999) 
Chang JS, Lawless PA, Yamamoto T, IEEE Trans. Plasma Sci., 19, 1152 (1991) 
Chen L, Lin J, Zeng HC, Tan KL, Catal. Commun., 2, 201 (2001) 
Deng SG, Lin YS, Chem. Eng. Sci., 52(10), 1563 (1997) 
Eliasson B, Liu CJ, Kogelschatz U, Ind. Eng. Chem. Res., 39(5), 1221 (2000) 
Heintze M, Magureanu M, J. Catal., 206(1), 91 (2002) 
HOLMEN A, OLSVIK O, ROKSTAD OA, Fuel Process. Technol., 42(2), 249 (1995) 
Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441 (1997)
Jeong HK, Kim SC, Han C, Lee H, Song HK, Na BK, Korean J. Chem. Eng., 18(2), 196 (2001)
Kim SS, Lee H, Na BK, Song HK, Korean J. Chem. Eng., 20(5), 869 (2003)
Kim SS, Lee H, Choi JW, Na BK, Song HK, J. Ind. Eng. Chem., 9(6), 787 (2003)
Kim SS, Lee H, Na BK, Song HK, Catal. Today, 89(1-2), 193 (2004) 
Kim SS, Lee H, Na BK, Song HK, "Methane Conversion to Higher Hydrocarbons in a Dielectric Barrier Discharge with Pt/Al2O3" Journal of Chemical Engineering of Japan, in press (2004)
Larkin DW, Lobban LL, Mallinson RG, Ind. Eng. Chem. Res., 40, 1594 (2001) 
Li ZH, Tian SX, Wang HT, Tian HB, J. Mol. Catal. A-Chem., 211, 149 (2004) 
Lin CH, Wang JX, Lunsford JH, J. Catal., 111(2), 302 (1988) 
Liu CJ, Marafee A, Hill B, Xu GH, Mallinson R, Lobban L, Ind. Eng. Chem. Res., 35(10), 3295 (1996) 
Liu CJ, Marafee A, Mallinson R, Lobban L, Appl. Catal. A: Gen., 164(1-2), 21 (1997) 
Liu CJ, Mallinson R, Lobban L, J. Catal., 179(1), 326 (1998) 
Liu CJ, Xu GH, Wang TM, Fuel Process. Technol., 58(2), 119 (1999) 
Liu CJ, Mallinson R, Lobban L, Appl. Catal. A: Gen., 178(1), 17 (1999) 
Liu CJ, Xue B, Eliasson B, He F, Li Y, Xu GH, Plasma Chem. Plasma Process., 21(3), 301 (2001) 
Liu CJ, Vissokov GP, Jang BWL, Catal. Today, 72(3-4), 173 (2002) 
Liu CJ, Yu K, Zhang YP, Zhu X, He F, Eliasson B, Appl. Catal. B: Environ., 47(2), 37 (2004)
Marafee A, Liu CJ, Xu GH, Mallinson R, Lobban L, Ind. Eng. Chem. Res., 36(3), 632 (1997) 
Nam SW, Yoon SP, Ha HY, Hong SA, Maganyuk AP, Korean J. Chem. Eng., 17(3), 288 (2000)
Savinov SY, Lee H, Song HK, Na BK, Ind. Eng. Chem. Res., 38(7), 2540 (1999) 
Savinov SY, Lee H, Song HK, Na BK, Korean J. Chem. Eng., 21(3), 601 (2004)
Sofranko JA, Leonard JJ, Jones CA, J. Catal., 103(2), 302 (1987) 
Thanyachotpaiboon K, Chavadej S, Caldwell TA, Lobban LL, Mallinson RG, AIChE J., 44(10), 2252 (1998) 
Wang JG, Liu CJ, Zhang YP, Yu KL, Zhu XL, He F, Catal. Today, 89(1-2), 183 (2004) 
Zhang HS, Wang JX, Driscoll DJ, Lunsford JH, J. Catal., 112(2), 366 (1988) 
Zhang Y, Chu W, Cao WM, Luo CR, Wen XG, Zhou KL, Plasma Chem. Plasma Process., 20(1), 137 (2000) 
Zhang Y, Smith KJ, Catal. Today, 77(3), 257 (2002) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로