Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 21, 2005
Accepted June 22, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Investigations of Local Pressure Drop Fluctuation Signals in Annular Type Fluidized Bed Photoreactor by Continuous Wavelet Transform
Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
Korean Journal of Chemical Engineering, November 2005, 22(6), 964-968(5), 10.1007/BF02705683
Download PDF
Abstract
.The wavelet transform is an effective tool for studying the dynamic behavior of fluidized beds in the resolution of time variables. To understand the behavior of photocatalyst under different velocity in an annular type fluidized bed, a new analysis technique (Continuous Wavelet Transform: CWT) is applied. With the time-frequency localization characteristics embedded in wavelets, the time and frequency information of signals can be presented as a visualized scheme. By analysis of various methods for pressure fluctuation signals measured from an annular type fluidized bed, it was found that the dynamic behavior of fluidization in the annulus fluidized bed reactor was easily observed with the aid of wavelet transform.
References
Cheremishinoff NP, Cheremishinoff PN, Hydrodynamics of Gas-Solids Fluidization, Gulf Publishing Company, Houston, 137 (1984)
Daubechies I, IEEE Trans. Inform. Theory, 36, 961 (1990)
Ellis N, Briens LA, Grace JR, Bi HT, Lim CJ, Chem. Eng. J., 96(1-3), 105 (2003)
Farge M, Annu. Rev. Fluid Mech., 24, 395 (1992)
Grossman A, Morlet J, J. Math. Anal., 15, 723 (1984)
Huang S, Hsieh C, Electr Pow Syst. Res., 58, 81 (2001)
Hurst HE, Trans. Amer. Soc. Civil Engrs., 116, 770 (1951)
Kim MJ, Nam W, Han GY, Korean J. Chem. Eng., 21(3), 721 (2004)
Kunii D, Levenspiel O, Fluidization Engineering, Butterworth Heinemann, Boston, 71 (1991)
Lim TH, Kim SD, Korean J. Chem. Eng., 19(6), 1072 (2002)
Morlet J, Arens G, Fourgeau E, Glard D, Geophysics, 47, 203 (1982)
Nam W, Kim J, Han GY, Chemosphere, 47, 1019 (2002)
Nikolaou NG, Antoniadis IA, Mech. Syst. Signal Proc., 16, 677 (2002)
Park SH, Kim SD, Korean J. Chem. Eng., 20(1), 128 (2003)
Park SH, Kim SD, Korean J. Chem. Eng., 18(6), 1015 (2001)
Ren JQ, Mao QM, Li JH, Lin WG, Chem. Eng. Sci., 56(3), 981 (2001)
Torrence C, Compo GP, Bull. Amer. Meteor. Soc., 79, 61 (1998)
Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Sci., 55(15), 2957 (2000)
Zhou HS, Lu JD, Lin LA, Chem. Eng. Sci., 55(4), 839 (2000)
Daubechies I, IEEE Trans. Inform. Theory, 36, 961 (1990)
Ellis N, Briens LA, Grace JR, Bi HT, Lim CJ, Chem. Eng. J., 96(1-3), 105 (2003)
Farge M, Annu. Rev. Fluid Mech., 24, 395 (1992)
Grossman A, Morlet J, J. Math. Anal., 15, 723 (1984)
Huang S, Hsieh C, Electr Pow Syst. Res., 58, 81 (2001)
Hurst HE, Trans. Amer. Soc. Civil Engrs., 116, 770 (1951)
Kim MJ, Nam W, Han GY, Korean J. Chem. Eng., 21(3), 721 (2004)
Kunii D, Levenspiel O, Fluidization Engineering, Butterworth Heinemann, Boston, 71 (1991)
Lim TH, Kim SD, Korean J. Chem. Eng., 19(6), 1072 (2002)
Morlet J, Arens G, Fourgeau E, Glard D, Geophysics, 47, 203 (1982)
Nam W, Kim J, Han GY, Chemosphere, 47, 1019 (2002)
Nikolaou NG, Antoniadis IA, Mech. Syst. Signal Proc., 16, 677 (2002)
Park SH, Kim SD, Korean J. Chem. Eng., 20(1), 128 (2003)
Park SH, Kim SD, Korean J. Chem. Eng., 18(6), 1015 (2001)
Ren JQ, Mao QM, Li JH, Lin WG, Chem. Eng. Sci., 56(3), 981 (2001)
Torrence C, Compo GP, Bull. Amer. Meteor. Soc., 79, 61 (1998)
Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Sci., 55(15), 2957 (2000)
Zhou HS, Lu JD, Lin LA, Chem. Eng. Sci., 55(4), 839 (2000)