Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 31, 2005
Accepted December 29, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis of ZnO nanowires on Si substrate by thermal evaporation method without catalyst: Structural and optical properties
School of Chemical Engineering and Technology and Nanomaterials Processing Research Centre, Korea 1Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Korea
Korean Journal of Chemical Engineering, May 2006, 23(3), 499-504(6), 10.1007/BF02706756
Download PDF
Abstract
Synthesis of ZnO nanowires was achieved on Si(100) substrate by the thermal evaporation of high purity metallic zinc powder without the use of any metal catalyst or additives. The diameter and length of the as-grown nanowires were in the range of 20-35 nm and few micrometers, respectively. The shapes and sizes of ZnO nanowires were dependent on the growth time. The high resolution transmission electron microscopy and selected area electron diffraction patterns indicated that the as-grown products are single crystalline with wurtzite hexagonal phase. Room temperature photoluminescence studies exhibited a strong UV emission and a suppressed green emission, confirming the good optical properties for the deposited nanowires.
References
Arnold MS, Avouris P, Pan ZW, Wang ZL, J. Phys. Chem. B, 107(3), 659 (2003)
Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188 (2000)
Golra CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M Shen H, J. Appl. Phys., 85, 2595 (1999)
Gordillo G, Surf. Rev. Lett., 9, 1675 (2002)
Jeong JS, Lee JY, Cho JH, Suh HJ, Lee CJ, Chem. Mater., 17, 2752 (2005)
Keis K, Vayssieres L, Lindquist S, Hagfeldt A, Nanostruct. Mater., 12, 487 (1999)
Kim SH, Umar A, Hahn YB, Korean J. Chem. Eng., 22(3), 489 (2005)
Kim TY, Lee SH, Mo YH, Nahm KS, Kim JY, Suh EK, Kim M, Korean J. Chem. Eng., 21(3), 733 (2004)
Kind H, Yan H, Law M, Messer B, Yang P, Adv. Mater., 14, 158 (2002)
Kong XY, Wang ZL, Nano Lett., 3, 1625 (2003)
Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST, Science, 299, 1874 (2003)
Minne SC, Manalis SR, Quate CF, Appl. Phys. Lett., 67, 3918 (1995)
Pal B, Sharon M, Mater. Chem. Phys., 76, 82 (2002)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Peng LH, Zhang YC, Lin YC, Appl. Phys. Lett., 78, 4 (2001)
Sekar A., Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 277, 471 (2005)
Sekar A, Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 282, 131 (2005)
Umar A, Lee S, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 277, 479 (2005)
Umar A, Lee S, Im YH, Hahn YB, Nanotechnology, 16, 2462 (2005)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, Appl. Phys. Lett., 4, 89 (1964)
Wang X, Li Q, Liu Z, Zhang J, Liu Z, Wang R, Appl. Phys. Lett., 84, 4941 (2004)
Wu ZH, Mei X, Kim D, Blumin M, Ruda HE, Liu JQ, Kavanagh KL, Appl. Phys. Lett., 83, 3368 (2003)
Xiangfeng C, Dongli J, Djurisic AB, Leung YH, Chem. Phys. Lett., 401, 426 (2005)
Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP, Appl. Phys. Lett., 83, 1689 (2003)
Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188 (2000)
Golra CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M Shen H, J. Appl. Phys., 85, 2595 (1999)
Gordillo G, Surf. Rev. Lett., 9, 1675 (2002)
Jeong JS, Lee JY, Cho JH, Suh HJ, Lee CJ, Chem. Mater., 17, 2752 (2005)
Keis K, Vayssieres L, Lindquist S, Hagfeldt A, Nanostruct. Mater., 12, 487 (1999)
Kim SH, Umar A, Hahn YB, Korean J. Chem. Eng., 22(3), 489 (2005)
Kim TY, Lee SH, Mo YH, Nahm KS, Kim JY, Suh EK, Kim M, Korean J. Chem. Eng., 21(3), 733 (2004)
Kind H, Yan H, Law M, Messer B, Yang P, Adv. Mater., 14, 158 (2002)
Kong XY, Wang ZL, Nano Lett., 3, 1625 (2003)
Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST, Science, 299, 1874 (2003)
Minne SC, Manalis SR, Quate CF, Appl. Phys. Lett., 67, 3918 (1995)
Pal B, Sharon M, Mater. Chem. Phys., 76, 82 (2002)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Peng LH, Zhang YC, Lin YC, Appl. Phys. Lett., 78, 4 (2001)
Sekar A., Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 277, 471 (2005)
Sekar A, Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 282, 131 (2005)
Umar A, Lee S, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 277, 479 (2005)
Umar A, Lee S, Im YH, Hahn YB, Nanotechnology, 16, 2462 (2005)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, Appl. Phys. Lett., 4, 89 (1964)
Wang X, Li Q, Liu Z, Zhang J, Liu Z, Wang R, Appl. Phys. Lett., 84, 4941 (2004)
Wu ZH, Mei X, Kim D, Blumin M, Ruda HE, Liu JQ, Kavanagh KL, Appl. Phys. Lett., 83, 3368 (2003)
Xiangfeng C, Dongli J, Djurisic AB, Leung YH, Chem. Phys. Lett., 401, 426 (2005)
Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP, Appl. Phys. Lett., 83, 1689 (2003)