ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 9, 2005
Accepted February 7, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Analytical methods of size distribution for organic matter in water and wastewater

Faculty of Engineering, University of Technology, Sydney, Australia 1Civil Engineering Department, Kyungnam University, Wolyoung-dong, Masan 631-701, Korea
Korean Journal of Chemical Engineering, July 2006, 23(4), 581-591(11), 10.1007/BF02706798
downloadDownload PDF

Abstract

Organic matter (OM), such as natural organic matter (NOM) in surface waters, and effluent organic matter (EfOM) in wastewaters causes many problems. For example, color, taste and odor derogate potable water quality, while the presence of endocrine disrupting substances and the formation of disinfectant byproducts (DBPs) are public health concerns. Over the years various analytical methods have been developed to characterize organic matter in natural and wastewaters. However, it remains difficult to determine the properties and characteristics of various OM constituents. Since all OM components in water have their own specific sizes, size distribution is a useful analytical tool to characterize complex OM. The results also enable better interpretation of experimental results, determination of future research directions, and evaluation of the progress of investigations. This review presents the common analytical size distribution methods used to characterize OM present in waters and wastewaters.

References

Aiken GR, Malcolm RL, Geochim. Cosmochim. Acta, 51, 2177 (1987) 
Amy GL, Collins MR, Kuo CJ, King PH, J. Am. Water Works Ass., 79, 43 (1987)
Assemi S, Newcombe G, Hepplewhite C, Beckett R, Water Res., 38, 1467 (2004) 
ASTM, Standard E11-95: Specification for wire cloth and sieves for testing purposes, American Society for Testing and Materials, West Conshohocken (1995)
Beckett R, Jue Z, Giddings JC, Environ. Sci. Technol., 21, 289 (1987) 
Beri RG, Hacche LS, Martin CF, HPLC: practical and industrial applications, CRC press, 2nd Ed., Washington D.C., Ch. 6, 315 (2001)
Bowen WR, Mohammad AW, Trans IChemE, 76, 885 (1998) 
Brock TD, “Membrane filtration,” Sci. Tech. Inc. (1983)
Buffle J, Deladoey P, Haerri W, Anal. Chem. Acta, 101, 339 (1978) 
Buffle J, Perret D, Newman M, The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids, and macromolecules, In Environmental Particles. 1, eds. Buffle, J. and van Leeuwen, H.P. 171. Lewis Publishers, Boca Raton (1992)
Cai Y, Water Res., 33, 3056 (1999) 
Cameron RS, J. Soil Sci., 23, 342 (1972) 
Chin Y, Aiken G, O’Loughlin E, Environ. Sci. Technol., 28, 1853 (1994) 
Cho J, Amy G, Pellegrino J, J. Membr. Sci., 164(1-2), 89 (2000) 
Cho J, Natural organic matter (NOM) rejection by, and flux-decline of, nanofiltration (NF) and ultrafiltration (UF) membranes, PhD thesis, Department of Environmental Engineering, University of Colorado (1998)
Combe C, Molis E, Lucas P, Riley R, Clark MM, J. Membr. Sci., 154(1), 73 (1999) 
Eaton AD, Clesceri LS, Greenberg AE, Standard methods for the examination of water and wastewater, American Public Health Association, Washington, DC. (1995)
Gimbert LJ, Andrew KN, Haygarth PM, Worsfold PJ, Trends in Analytical Chemistry, 22, 615 (2003) 
Gjessing E, Lee GF, Environ. Sci. Technol., 1, 631 (1967) 
Hartmann RL, Williams SKR, J. Membr. Sci., 209(1), 93 (2002) 
Hassellov M, Mar. Chem., 94, 111 (2005) 
Her NG, Amy G, Foss D, Cho J, Yoon Y, Kosenka P, Environ. Sci. Technol., 36, 1069 (2002) 
Her NG, “Identification and characterization of foulants and scalants on NF membrane,” Doctoral thesis of philosophy, University of Colorado, 40 (2002)
Her N, Amy G, Foss D, Cho J, Environ. Sci. Technol., 36, 3393 (2002) 
Huber SA, Desalination, 119(1-3), 229 (1998) 
Huber SA, “Organics: the value of chromatographic characterization of TOC in process water plants,” Ultrapure Water, December, 16 (1998)
ISO, Technical requirements and testing. International Organization for Standardization, Geneve (1990)
Kainulainen T, Tuhkanen T, Vartianinen T, Heinonen-Tanski H, Kalliokoski P, Water Sci. Technol., 30, 169 (1994)
Kim YM, Koo YM, Korean J. Chem. Eng., 19(4), 663 (2002)
Lee S, Park G, Amy G, Hong SK, Moon SH, Lee DH, Cho J, J. Membr. Sci., 201(1-2), 191 (2002) 
Leenheer JA, Croue JP, Environ. Sci. Technol., 37, 19A (2003)
Lentsch S, Aimar P, Orozco JL, Biotechnol. Bioeng., 41, 1039 (1993) 
Levine AD, Tchobanoglous G, Asano T, Journal WPCF, 57, 805 (1985)
Logan BE, Jiang Q, J. Environ. Eng., 116, 1046 (1990)
Macko C, Proc. AIChE Sym. Series, 75, 162 (1979)
Malpei F, Rozzi A, Colli S, Uberti M, J. Membr. Sci., 131(1-2), 71 (1997) 
Metcalf and Eddy, Wastewater engineering - treatment, disposal and reuse, 3rd, revised by G. Tchobanoglous and F. Burton (1991)
Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, 2nd edition, Boston, USA, 18 (1996)
Novotny FJ, Rice JA, Well DA, Abbtbraun G, Kudryavtsev AV, Hesse S, Water Res., 32, 872 (1998) 
Ogura N, Mar. Biol., 24, 305 (1974) 
Painter HA, Chem. Ind.(17), 818 (1973)
Pelekani C, Newcombe G, Snoeyink VL, Hepplewhite C, Assemi S, Beckett R, Environ. Sci. Technol., 33, 2807 (1999) 
Pempkowiak J, Obarska-Pempkowiak H, Sci. Total Environ., 297, 59 (2002) 
Poole CF, The essence of chromatography, Elsevier Science B.V. Netherland (2003)
Reid PM, Wilkinson AE, Tipping E, Jones MN, Geochim. Cosmochim. Acta, 54, 131 (1990) 
Reszat TN, Hendry MJ, Anal. Chem., 77, 4194 (2005) 
Schafer AI, Natural organics removal using membranes: principles, performance, and cost, Technomic Publishing Company, Inc., Pennsylvania, USA (2001)
Schnoor JL, Environ. Sci. Technol., 13, 1134 (1979) 
Shaw PJ, De Haan H, Jones RI, Environ. Sci. Technol., 15, 753 (1994) 
Shon HK, Vigneswaran S, Kim IS, Cho J, Ngo HH, Water Res., 38, 1933 (2004) 
Shon HK, Vigneswaran S, Ben Aim R, Ngo HH, Kim IS, Cho J, Environ. Sci. Technol., 39, 3864 (2005) 
Shon HK, Vigneswaran S, Snyder SA, “Effluent organic matter (EfOM) in wastewater: constituents, effects and treatment,” Crit. Rev. Env. Sci. Tec., in press (2006)
Shon HK, Vigneswaran S, Ngo HH, AIChE J., 52(1), 207 (2006) 
Singh S, Khulbe KC, Matsuura T, Ramamurthy P, J. Membr. Sci., 142(1), 111 (1998) 
Stevenson EJ, Colloidal properties of humic substances. Humus Chemistry, Wiley Interscience, New York (1982)
Stull JK, Swift DJP, Niedoroda AW, Sci. Total Environ., 179, 73 (1996)
Swift RS, Posner AM, J. Soil Sci., 22, 237 (1971) 
Thurman EM, Organic geochemistry of natural waters, Martinus Nijhoff/Dr. W. Junk Publishers, The Netherlands (1985)
Thurman EM, Malcolm RL, Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography, USGS Water Supply Paper 1817-G (1979)
Thurman EM, Werhsaw RL, Malcolm RL, Pinckney DJ, Org. Geochem., 4, 27 (1982) 
Tong X, Caldwell KD, J. Chromatogr. B, 674, 39 (1995)
Xu R, Particle characterization: light scattering methods, Kluwer Academic Publishers, The Netherlands (2000)
Zanardi-Lamardo E, Clark CD, Zika RG, Anal. Chim. Acta, 443, 171 (2001) 
Zanardi-Lamardo E, Clark CD, Moore CA, Zika RG, Environ. Sci. Technol., 36, 2806 (2002) 
Zhou Q, Cabaniss SE, Maurice PA, Water Res., 34, 3505 (2000) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로