ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 29, 2005
Accepted March 9, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation of La0.8Sr0.2CoO3/Ce0.85Sm0.15O2-x cathode performance of solid oxide fuel cell by electrochemical impedance spectroscopy: Effect of firing temperature

Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phaya Thai, Bangkok, 10330, Thailand 1Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
mali.h@chula.ac.th
Korean Journal of Chemical Engineering, September 2006, 23(5), 720-725(6), 10.1007/BF02705917
downloadDownload PDF

Abstract

Perovskite type complex oxide L0.8Sr0.2CoO3-δ symmetrical cells were prepared on Samaria doped ceria electrolyte Ce0.85Sm0.15O2-x by using the screen-printing method in a laboratory scale. The performance of the symmetrical cell was investigated by using electrochemical spectroscopy at frequency ranging from 0.1-300 kHz. Effect of firing temperature from 975-1,050 ℃ was investigated under the controlled oxygen pressure from 0.002-0.21 atm and controlled measuring temperature from 635-782 ℃. The preliminary results indicated that, for all cells prepared at different firing temperatures, the SEM and XRD did not indicate any differences between them. By using EIS, however, two impedance arcs were obviously observed. This first arc was found at high frequency region (>1,000 Hz) and the second one was observed at low frequency region (<10 Hz). The high frequency arc corresponded to the impedance of electrontransfer and ion-transfer processes occurring at the current collector/electrode and electrode/electrolyte interfaces. The low frequency arc was the convoluted contribution of the diffusion processes (non-charge transfer processes). Changing firing temperature, measuring temperature and oxygen pressure leads to changing of symmetrical cell performances. The activation energy of these symmetrical cells was around 1.5-2.0 eV depending on the firing temperature and oxygen pressure.

References

Adler SB, Solid State Ion., 111(1-2), 125 (1998) 
Adler SB, Solid State Ion., 135(1-4), 603 (2000) 
Adler SB, Factor governing oxygen reduction in solid oxide fuel cell cathodes-A review, Department of chemical Engineering, University of Washington (2004)
Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 144(5), 1884 (1997) 
Anderson HU, Tai LW, Chen CC, Nasrallah MM, Huebner W, in Doliya, M., Yamamoto, O., Tagawa, H. and Singhal, S.C., (Eds.), Solid oxide fuel cells IV, PV 95-1, 375, The Electrochemical Society Proceeding Series, Pennington, NJ (1995)
Charojrochkul S, Choy KL, Steele BCH, Solid State Ion., 21, 107 (1999)
Chen X, Wu NJ, Ritums DL, Ignatiev A, Thin Solid Films, 342(1-2), 61 (1999) 
Chen W, Wen T, Nie H, Zheng R, Mat. Res. Bull., 38, 1319 (2003) 
Gao JF, Liu XQ, Peng DK, Meng GY, Catal. Today, 82(1-4), 207 (2003) 
Guo XM, Hidajat K, Ching CB, Korean J. Chem. Eng., 15(5), 469 (1998)
Jorgensen MJ, Primdahl S, Morgensen M, Electrochim. Acta, 44(24), 4195 (1999) 
Klvana D, Kirchnerova J, Tofan C, Korean J. Chem. Eng., 16(4), 470 (1999)
Klvana D, Song KS, Kirchnerova J, Korean J. Chem. Eng., 19(6), 932 (2002)
Lane JA, Adler S, Middleton PH, Steele BCH, in Dokiya, M., Yamamoto, O., Tagawa, H. and Singhal, S.C. (Eds.), Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, The Electrochemical Soc., New Jersey (1995)
Larminie J, Dicks A, Fuel cell systems explained, John Wiley & Sons (2003)
Lee HK, Mat. Chem. Phys., 77, 639 (2002) 
Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P, Solid State Ion., 80(3-4), 189 (1995) 
Rosso I, Saracco G, Specchia V, Korean J. Chem. Eng., 20(2), 222 (2003)
Sahibzada M, Benson SJ, Rudkin RA, Kilner JA, Solid State Ion., 113-115, 285 (1998) 
Sekido S, Tachibana H, Yamamura Y, Kambara T, Solid State Ion., 37, 253 (1990) 
Sasaki J, Mizusaki J, Yamauchi S, Solid State Ion., 3-4, 531 (1984) 
Wang SR, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M, Solid State Ion., 146(3-4), 203 (2002) 
Yuemei LY, Jacobson AJ, Chen CL, Luo GP, Ross KD, Chu CW, Appl. Phys. Lett., 79, 776 (2001) 
Yamamoto O, Takeda Y, Kanno R, Noda M, Solid State Ion., 22, 241 (1987) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로