ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 9, 2006
Accepted May 4, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Gas management in flow field design using 3D direct methanol fuel cell model under high stoichiometric feed

Department of Chemical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea 1Samsung Advanced Institute of Technology, Suwon 440-600, Korea
Korean Journal of Chemical Engineering, September 2006, 23(5), 753-760(8), 10.1007/BF02705923
downloadDownload PDF

Abstract

This study presents a 3D CFD model for modeling gas evolution in anode channels of a DMFC under high stoichiometric feed. The improved two-phase model includes a new submodel for mass source and interphase transfer in anode channels. Case studies of typical flow field designs such as parallel and serpentine flow fields illustrate applications of the CFD model. Simulation results reveal that gas management of typical flow fields is ineffective under certain operating conditions. The CFD-based simulations are used to visualize and to analyze the gas evolution and flow patterns in anode channels. The developed CFD model is useful in flow field design for improving gas management in DMFC.

References

Argyropoulos P, Scott K, Taama WM, Electrochim. Acta, 44(20), 3575 (1999) 
Argyropoulos P, Scott K, Taama WM, Chem. Eng. J., 78(1), 29 (2000) 
Baxter SF, Battaglia VS, White RE, J. Electrochem. Soc., 146(2), 437 (1999) 
Bewer T, Beckmann T, Dohle H, Mergel J, Stolten D, J. Power Sources, 125(1), 1 (2004) 
Danilov VA, Lim J, Moon I, Choi KH, A CFD-based Twofluid Model for a DMFC, AIChE Annual Meeting, October 30 - November 4, Cincinnati, Ohio (2005)
Geiger A, Lehmann E, Vontobel P, Scherer GG, Direct methanol fuel cell . in situ investigation of carbon dioxide patterns in anode flow fields by neutron radiography, Scientific Report 2000, Volume V, p. 86-87, ed. by: C. Daum and J. Leuenberger, Switzerland, http://www1.psi.ch/
Kim MC, Kim KY, Kim S, Korean J. Chem. Eng., 20(4), 601 (2003)
Kulikovsky AA, Electrochem. Commun., 7, 237 (2005) 
Lee S, Kim D, Lee J, Chung ST, Ha HY, Korean J. Chem. Eng., 22(3), 406 (2005)
Lim J, Danilov VA, Cho Y, Choi K, Chang H, Moon I, Flow field design for gas management in a direct methanol fuel cell with a bipolar plate, in: Proceeding of PSE ASIA (2005)
Pak C, Lee SJ, Lee SA, Chang H, Korean J. Chem. Eng., 22(2), 214 (2005)
Sokolichin A, Eigenberger G, Lapin A, Lubbert A, Chem. Eng. Sci., 52(4), 611 (1997) 
Sundmacher K, Scott K, Chem. Eng. Sci., 54(13-14), 2927 (1999) 
Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED, Chem. Eng. Sci., 56(2), 333 (2001) 
Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, LeMouel A, McCord BN, Int. J. Multiph. Flow, 25(3), 395 (1999) 
Wang ZH, Wang CY, J. Electrochem. Soc., 150(4), A508 (2003) 
Wang ZH, Wang CY, Chen KS, J. Power Sources, 94(1), 40 (2001) 
Yang H, Zhao TS, Electrochim. Acta, 50(16-17), 3243 (2005) 
Yang H, Zhao TS, Cheng P, Int. J. Heat Mass Transf., 47(26), 5725 (2004) 
Yang H, Zhao TS, Ye Q, J. Power Sources, 142(1-2), 117 (2005) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로