Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 26, 2005
Accepted March 17, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Influence of sputtering gas pressure on the LiCoO2 thin film cathode post-annealed at 400 ℃
Ho Young Park
Sang Cheol Nam†
Young Chang Lim
Kyu Gil Choi
Ki Chang Lee
Gi Back Park
Heesook Park Kim1
Sung Baek Cho2
Microcell Center, Nuricell Inc., #503, Sinnae Technotown, 485 Sangbong-dong, Joongrang-gu, Seoul 131-863, Korea 1College of General Education, Kookmin University, Seoul 136-702, Korea 2Advanced Technology Research Center, Agency for Defense Development, Yuseong P.O. Box 35, Daejeon 305-600, Korea
scnam@nuricell.com
Korean Journal of Chemical Engineering, September 2006, 23(5), 832-837(6), 10.1007/BF02705936
Download PDF
Abstract
LiCoO2 thin film cathodes were prepared by RF magnetron sputtering and post-annealing. The surface morphological change of the LiCoO2 thin film was in-situ measured by hot stage SEM with increasing temperature. The effects of sputtering gas pressure and post-annealing at low temperature (400 ℃) were investigated by XRD, AFM, ICP-AES and RBS. The electrochemical characteristics of LiCoO2 thin films were changed with variation of sputtering gas pressure. A difference of micro-structural evolution after post-annealing was observed, which related to the thin film properties. The electrochemical analysis revealed that the optimal sputtering gas pressure with the low temperature annealing step increases cell capacity and rate capability.
References
Antaya M, Cearns K, Preston JS, Reimers JN, Dahn JR, J. Appl. Phys., 76, 2799 (1994)
Antaya M, Dahn JR, Preston JS, Rossen E, Reimers JN, J. Electrochem. Soc., 140, 575 (1993)
Bates JB, Dudney NJ, Neudecker BJ, Hart FX, Jun HP, Hackney SA, J. Electrochem. Soc., 147(1), 59 (2000)
Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD, Solid State Ion., 135(1-4), 33 (2000)
Bates JB, Gruzalski GR, Dudney NJ, Luck CF, Yu XH, Jones SD, Solid State Technol., 36, 59 (1993)
Benqlilou-Moudden H, Blondiaux G, Vinatier P, Levasseur A, Thin Solid Films, 333(1-2), 16 (1998)
Bhat MH, Chakravarthy BP, Ramakrishnan PA, Levasseur A, Rao KJ, Bull. Mat. Sci., 23, 461 (2000)
Bouwman PJ, Boukamp BA, Bouwmeester HJM, Wondergem HJ, Notten PHL, J. Electrochem. Soc., 148(4), A311 (2001)
Fragnaud P, Brousse T, Schleich DM, J. Power Sources, 63, 187 (1996)
Lee LK, Lee SJ, Baik HK, Lee HY, Jang SW, Lee SM, Electrochem. Solid State Lett., 2, 512 (1999)
Lee SJ, Lee JK, Kim DW, Baik HK, Lee SM, J. Electrochem. Soc., 143(11), L268 (1996)
Polo da Fonseca CN, Davalos J, Kleinke M, Frantini MCA, Gorenstein A, J. Power Sources, 81-82, 575 (1999)
Rossen E, Reimers JN, Dahn JR, Solid State Ion., 62, 53 (1993)
Song SW, Han KS, Yoshimura M, J. Am. Ceram. Soc., 83, 2839 (2000)
Striebel KA, Deng CZ, Wen SJ, Cairns EJ, J. Electrochem. Soc., 143(6), 1821 (1996)
Wang B, Bates JB, Hart FX, Sales BC, Zuhr RA, Robertson JD, J. Electrochem. Soc., 143(10), 3203 (1996)
Whitacre JF, West WC, Ratnakumar BV, J. Power Sources, 103(1), 134 (2001)
Whitacre JF, West WC, Brandon E, Ratnakumar BV, J. Electrochem. Soc., 148(10), A1078 (2001)
Yan HW, Huang XJ, Li H, Chen LQ, Solid State Ion., 113-115, 11 (1998)
Antaya M, Dahn JR, Preston JS, Rossen E, Reimers JN, J. Electrochem. Soc., 140, 575 (1993)
Bates JB, Dudney NJ, Neudecker BJ, Hart FX, Jun HP, Hackney SA, J. Electrochem. Soc., 147(1), 59 (2000)
Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD, Solid State Ion., 135(1-4), 33 (2000)
Bates JB, Gruzalski GR, Dudney NJ, Luck CF, Yu XH, Jones SD, Solid State Technol., 36, 59 (1993)
Benqlilou-Moudden H, Blondiaux G, Vinatier P, Levasseur A, Thin Solid Films, 333(1-2), 16 (1998)
Bhat MH, Chakravarthy BP, Ramakrishnan PA, Levasseur A, Rao KJ, Bull. Mat. Sci., 23, 461 (2000)
Bouwman PJ, Boukamp BA, Bouwmeester HJM, Wondergem HJ, Notten PHL, J. Electrochem. Soc., 148(4), A311 (2001)
Fragnaud P, Brousse T, Schleich DM, J. Power Sources, 63, 187 (1996)
Lee LK, Lee SJ, Baik HK, Lee HY, Jang SW, Lee SM, Electrochem. Solid State Lett., 2, 512 (1999)
Lee SJ, Lee JK, Kim DW, Baik HK, Lee SM, J. Electrochem. Soc., 143(11), L268 (1996)
Polo da Fonseca CN, Davalos J, Kleinke M, Frantini MCA, Gorenstein A, J. Power Sources, 81-82, 575 (1999)
Rossen E, Reimers JN, Dahn JR, Solid State Ion., 62, 53 (1993)
Song SW, Han KS, Yoshimura M, J. Am. Ceram. Soc., 83, 2839 (2000)
Striebel KA, Deng CZ, Wen SJ, Cairns EJ, J. Electrochem. Soc., 143(6), 1821 (1996)
Wang B, Bates JB, Hart FX, Sales BC, Zuhr RA, Robertson JD, J. Electrochem. Soc., 143(10), 3203 (1996)
Whitacre JF, West WC, Ratnakumar BV, J. Power Sources, 103(1), 134 (2001)
Whitacre JF, West WC, Brandon E, Ratnakumar BV, J. Electrochem. Soc., 148(10), A1078 (2001)
Yan HW, Huang XJ, Li H, Chen LQ, Solid State Ion., 113-115, 11 (1998)