ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 3, 2006
Accepted July 11, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Correlation of vapor-liquid equilibria for binary mixtures with free energy-based equation of state mixing rules: Carbon dioxide with alcohols, hydrocarbons, and several other compounds

Department of Chemical Engineering, Kyungnam University, Gyeongnam 631-701, Korea 1Department of Chemical Engineering, University of Delaware, Newark 19716, Delaware, USA 2Department of Chemical System Engineering, Chonnam National University, Yeosu, Jeonnam 550-749, Korea
Korean Journal of Chemical Engineering, November 2006, 23(6), 1016-1022(7), 10.1007/s11814-006-0023-1
downloadDownload PDF

Abstract

The correlation of vapor-liquid equilibrium data for high-pressure carbon dioxide systems is of interest in a number of industrial applications, including supercritical extraction. Here, we consider the correlation of data for 12 binary systems of carbon dioxide separately with alcohols, with hydrocarbons, and with acetone, benzene, and water. The Wong-Sandler (W-S) and modified Huron - Vidal first order (MHV1) free energy-based equation of state mixing rules (the W-S and MHV1 models) were used in the calculations. Both combined equation of state+free energy models generally resulted in good correlations of the experimental data over wide ranges of temperature and pressure with temperature - independent parameters. However, for the carbon dioxide+water system, the W-S model produced an 11% average absolute deviation in pressure, while no parameter that resulted in an AAD in pressure of less than 20% could be found for the MHV1 model.

References

Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
Adachi Y, Sugie H, Fluid Phase Equilib., 28, 103 (1986)
Berro C, Barna L, Rauzy E, Fluid Phase Equilib., 114(1-2), 63 (1996)
Besserer GJ, Robinson DB, J. Chem. Eng. Data, 18, 416 (1973)
Boukouvalas C, Spiliotis N, Coutsikos P, Tzouvaras N, Tassios D, Fluid Phase Equilib., 92, 75 (1994)
Cassel E, Matt M, Rogalski M, Solimando R, Fluid Phase Equilib., 134(1-2), 63 (1997)
Cheng H, Fernandez MEP, Zollweg JA, Streett WB, J. Chem. Eng. Data, 34, 319 (1989)
Chou GF, Forbert RR, Prausnitz JM, J. Chem. Eng. Data, 35, 26 (1990)
Dahl S, Michelsen ML, AIChE J., 36, 1829 (1990)
Day CY, Chang CJ, Chen CY, J. Chem. Eng. Data, 41(4), 839 (1996)
Gupta MK, Li YH, Hulsey BJ, Robinson RL, J. Chem. Eng. Data, 27, 55 (1982)
Hong JH, Kobayashi R, Fluid Phase Equilib., 41, 269 (1988)
Huron M, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Inomata H, Tuchiya K, Arai K, Saito S, J. Chem. Eng. Jpn., 19, 386 (1986)
Ishihara K, Tsukajima A, Tanaka H, Kato M, Sako T, Sato M, Hakuta T, J. Chem. Eng. Data, 41, 324 (1996)
Jenning DW, Leem RJ, Teja AS, J. Chem. Eng. Data, 36, 303 (1991)
Kalra H, Kubota H, Robinson DB, Ng HJ, J. Chem. Eng. Data, 23, 317 (1978)
Kaminishi GI, Yokoyama C, Takahadhi S, Fluid Phase Equilib., 34, 83 (1987)
Knapp H, Doring R, Oellrich L, Plocker U, Prausnitz JM, “Vapor-liquid equilibria for mixtures of low boiling substances,” DECHEMA Chemistry Data Series Vol. VI (1982)
Katayama T, Ohgaki K, Maekawa G, Goto M, Nagano T, J. Chem. Eng. Jpn., 8, 89 (1975)
Kato M, Aizawa K, Kanahira T, Ozawa T, J. Chem. Eng. Jpn., 24, 767 (1991)
Leu AD, Chung SYK, Robinson DB, J. Chem. Thermodyn., 23, 979 (1991)
Li YH, Dillard KH, Robinson RL, J. Chem. Eng. Data, 26, 53 (1981)
Maehias PM, Copeman TW, Fluid Phase Equilib., 13, 91 (1983)
Michelsen ML, Fluid Phase Equilib., 60, 213 (1990)
Mulero A, Larrey D, Cuadros F, Korean J. Chem. Eng., 23(4), 650 (2006)
Muller G, Bender E, Maurer G, Ber. Bunsenges, Phys. Chem., 92, 148 (1988)
Nagarajan N, Robinsom RL, J. Chem. Eng. Data, 31, 168 (1986)
Ohfaki K, Katayama T, J. Chem. Eng. Data, 21, 53 (1976)
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
Radosz M, J. Chem. Eng. Data, 31, 43 (1986)
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Sebastian HM, Simnick JJ, Lin HM, Chao KC, J. Chem. Eng. Data, 25, 138 (1980)
Semenova AI, Emel'yaniva EA, Tsimmerman SS, Tsiklis DS, Russ. J. Phys. Chem., 53, 2502 (1979)
Shibata SK, Sandler SI, J. Chem. Eng. Data, 34, 419 (1989)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 476 (2006)
Shyu GS, Hanif NS, Hall KR, Eubank PT, Fluid Phase Equilib., 130(1-2), 73 (1997)
Stryjk R, Vera JH, Can. J. Chem. Eng., 64, 323 (1986)
Suzuki K, Sue H, J. Chem. Eng. Data, 35, 63 (1990)
Takenouchi S, Kennedy GC, Amer. J. Sci., 262, 1055 (1964)
Takishima S, Saiki K, Arai K, Saito S, J. Chem. Eng. Jpn., 19, 48 (1986)
Tanaka H, Kato M, J. Chem. Eng. Jpn., 28(3), 263 (1995)
Traub P, Stephan K, Chem. Eng. Sci., 45, 751 (1990)
Wagner Z, Wichterle I, Fluid Phase Equilib., 33, 109 (1987)
Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
Yaginuma R, Nakajima T, Tanaka H, Kato M, J. Chem. Eng. Data, 42(4), 814 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로