ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 13, 2006
Accepted October 17, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons

Division of Biological Environment, Kangwon National University, 192-1, Hyoja 2-dong, Chuncheon 200-701, Korea 1School of Natural Resources, University of Nebraska, Lincoln, Nebraska 68583-0915, USA 2Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
Korean Journal of Chemical Engineering, November 2006, 23(6), 935-939(5), 10.1007/s11814-006-0011-5
downloadDownload PDF

Abstract

Zerovalent iron (ZVI) has drawn intense interest as an effective and inexpensive tool to enhance degradation of various environmental contaminants. Reduction of Cr(VI) to Cr(III) by ZVI merits environmental concern as a hazardous species is transformed into a non-hazardous one. Objectives of this research were to assess kinetics and capacity of Cr(VI) reduction by different sources of ZVIs, of which chemical parameters can base in situ application of ZVI to treat Cr(VI) contaminated water. Reduction kinetics were first-order and rapid showing that 50% of the initial Cr(VI) was reduced within 7.0 to 347 min depending on Cr(VI) concentration, temperature and ZVI source. The reduction rates were increased with decreasing the initial Cr(VI) concentrations and increasing the reaction temperatures. The J ZVI (Shinyo Pure Chemical Co., Japan) was more effective in Cr(VI) reduction than PU (Peerless Metal Powders, USA). The maximum reduction capacities of J and PU ZVIs at 25 oC were 0.045 and 0.042 mmol g.1 Fe0, respectively. A relatively higher value of the net reaction energy (Ea) indicated that Cr(VI) reduction by ZVI was temperature dependent and controlled by surface properties of ZVI. Chemical parameters involved in the Cr(VI) reduction by ZVI such as temperature quotient, kinetic rates, and stoichiometry indicated that the ZVI might be effective for in situ treatment of the Cr(VI) containing wastewater.

References

Babel S, Kurniawan TA, J. Hazard. Mater., B97, 219 (2003)
Bartlett RJ, James BR, “Chromium,” In Sparks, D. L. (ed.), Method of soil analysis, Part 3, Soil Sci. Soc. Am., Madison, WI, USA, 683 (1996)
Blowes DW, Ptacek CJ, Jambor JL, Environ. Sci. Technol., 31, 3348 (1997)
Choi DW, Kim YH, Korean J. Chem. Eng., 22(6), 894 (2005)
Comfort SD, Shea PJ, Machacek TA, Satapanajaru T, J. Environ. Qual., 32, 1717 (2003)
Dantas TND, Neto AAD, Moura MCP, Water Res., 35, 2219 (2001)
EPA, Permeable reactive barrier technologies for contaminant remediation, EPA OSWER, USA, EPA/600/R-98/125 (1998)
Fendorf SE, Li G, Environ. Sci. Technol., 30, 1614 (1996)
Hamadi NK, Chen XD, Farid MM, Lu MGQ, Chem. Eng. J., 84(2), 95 (2001)
Hernandez R, Zappi M, Kuo CH, Environ. Sci. Technol., 38, 5157 (2004)
Holan ZR, Volesky B, Prasetyo I, Biotechnol. Bioeng., 41, 819 (1993)
Khan SA Rehman R, Khan MA, Waste Manage., 15, 271 (1995)
Lasaga AC, Kirkpatrick RJ, Kinetics of geochemical processes, Mineral. Soc. Am., Washington, DC, USA (1983)
Lee DC, Park CJ, Yang JE, Jeong YH, Rhee HI, Appl. Microbiol. Biotechnol., 54(3), 445 (2000)
Lee DH, Min YW, Rhee HI, Yang JE, Chun GT, Jeong YH, J. Microbiol. Biotechnol., 12, 292 (2002)
Lee T, Lim H, Lee Y, Park JW, Chemosphere, 53, 479 (2003)
Losi ME, Amrhein C, Frankenberger WT, J. Environ. Qual., 10, 1141 (1994)
Namasivayam C, Ranganathan K, Environ. Pollut., 82, 255 (1993)
Ok YS, Lim S, Kim JG, Korean J. Environ. Agric., 22, 177 (2003)
Ouki SK, Kavannagh M, Waste Manage. Res., 15, 383 (1997)
Park J, Comfort SD, Shea PJ, Machacek TA, J. Environ. Qual., 33, 1305 (2004)
Ponders SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564 (2000)
Prakorn R, Kwanta N, Ura P, Korean J. Chem. Eng., 21(6), 1212 (2004)
Salibury FB, Ross C, Plant physiology, 4th eds. Wadsworth Publ. Co., USA (1992)
Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67 (2005)
Sparks DL, Environmental soil chemistry, Academic Press, USA (1995)
Yang JE, Kim JS, Ok YS, Yoo KY, In press (2006)
Yang JE, Kim JS, Ok YS, Yoo KY, Korean J. Environ. Agric., 24, 203 (2005)
Yang JE, Kim YK, Kim JH, Park YH, Environmental impacts and management strategies of trace metals in soil and groundwater in the republic of Korea, In: Soil and Groundwater Pollution and Remediation, P. M. Huang and I. K. Iskander, eds., CRC Press, New York (2000)
Yang JE, Skogley EO, Soil Sci. Soc. Am. J., 56, 408 (1992)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로