Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 27, 2006
Accepted June 19, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulation of protein adsorption in a batchwise affinity chromatography with a modified rate model
Nuclear Research Center for Agriculture & Medicine, AEOI, P.O. Box 31585-4395, Karaj, Iran 1Chemical Engineering Research Center, East China University of Science and Technology, Shanghai, 200237, China
Korean Journal of Chemical Engineering, November 2006, 23(6), 997-1002(6), 10.1007/s11814-006-0020-4
Download PDF
Abstract
A rate model was adapted to simulate the dynamics of protein adsorption. This model takes axial dispersion and film mass transfer into account where there is a nonlinear adsorption isotherm for protein. The model equations were solved with the application of orthogonal collocation method on finite elements. The model is validated with experimental adsorption of urokinase in a batchwise column chromatographic process. Adsorption kinetics and isotherm were measured in a batchwise operation. With the assumption of back mixing at the column inlet, the effect of the different flow pattern on the concentration change inside the column can be simulated with the rate model.
References
Aboudzadeh MR, Jiawen Z, Bin W, Korean J. Chem. Eng., 23(1), 124 (2006)
Andrade JD, Principles of protein adsorption. Surface and interfacial aspect of biomedical polymers, Vol (2), protein adsorption, Plenum press, New York (1985)
Anspach FB, Johnsoton A, Wirth HJ, Unger KK, Hearn MTW, J. Chromatogr., 499, 103 (1990)
Baker J, Finite element computational fluid mechanics, McGraw-hill, New York (1983)
Cao XJ, Zhu JW, Wang DW, Dai GC, Wu XY, Chin. J. Chem. Eng., 5(1), 69 (1997)
Chen TL, Hsu JT, AIChE J., 33, 1387 (1987)
Chung SF, Wen CY, AIChE J., 14, 857 (1968)
Dunnebier G, Engell S, Klatt KU, Schmidt-Traub H, Strube J, Weirich I, Comput. Chem. Eng., 22, S855 (1998)
Guiochon G, Ghodbabe S, J. Phys. Chem., 92, 3682 (1988)
Hritzko BJ, Xie Y, Wooley RJ, Wang NHL, AIChE J., 48(12), 2769 (2002)
Kaczmarski K, Antons D, Sajonz H, Sajonz P, Guiochon G, J. Chromatogr., 925, 1 (2001)
Houwing J, Billiet HAH, van der Wielen LAM, AIChE J., 49(5), 1158 (2003)
Lin S, Karger BL, J. Chromatogr., 499, 89 (1990)
Mazsaroff I, Cook S, Regnier FE, J. Chromatogr., 443, 119 (1988)
Petzold LR, DASSL: A differential/algebraic system solver, Lawrence Livermore National Laboratory Livermore, CA (1982)
Seidel A, Gelbin D, Chem. Eng. Sci., 41, 541 (1986)
Villadsen JV, Michelsen ML, Solution of differential equation model by polynomial approximation, Prentice-Hall, Englewood Cliffs, New Jersey (1978)
Wei DC, Xiao YD, Shu B, Yan S, Biochem. Eng. J., 14, 45 (2003)
Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9 (1966)
Whitley RD, Van Cott KE, Wang NHL, Ind. Eng. Chem. Res., 32, 149 (1993)
Whitely RD, Wachter R, Liu F, Wang NHL, J. Chromatogr., 465, 137 (1989)
Yu Q, Wang NHL, Sep. Purif. Methods, 15, 127 (1986)
Andrade JD, Principles of protein adsorption. Surface and interfacial aspect of biomedical polymers, Vol (2), protein adsorption, Plenum press, New York (1985)
Anspach FB, Johnsoton A, Wirth HJ, Unger KK, Hearn MTW, J. Chromatogr., 499, 103 (1990)
Baker J, Finite element computational fluid mechanics, McGraw-hill, New York (1983)
Cao XJ, Zhu JW, Wang DW, Dai GC, Wu XY, Chin. J. Chem. Eng., 5(1), 69 (1997)
Chen TL, Hsu JT, AIChE J., 33, 1387 (1987)
Chung SF, Wen CY, AIChE J., 14, 857 (1968)
Dunnebier G, Engell S, Klatt KU, Schmidt-Traub H, Strube J, Weirich I, Comput. Chem. Eng., 22, S855 (1998)
Guiochon G, Ghodbabe S, J. Phys. Chem., 92, 3682 (1988)
Hritzko BJ, Xie Y, Wooley RJ, Wang NHL, AIChE J., 48(12), 2769 (2002)
Kaczmarski K, Antons D, Sajonz H, Sajonz P, Guiochon G, J. Chromatogr., 925, 1 (2001)
Houwing J, Billiet HAH, van der Wielen LAM, AIChE J., 49(5), 1158 (2003)
Lin S, Karger BL, J. Chromatogr., 499, 89 (1990)
Mazsaroff I, Cook S, Regnier FE, J. Chromatogr., 443, 119 (1988)
Petzold LR, DASSL: A differential/algebraic system solver, Lawrence Livermore National Laboratory Livermore, CA (1982)
Seidel A, Gelbin D, Chem. Eng. Sci., 41, 541 (1986)
Villadsen JV, Michelsen ML, Solution of differential equation model by polynomial approximation, Prentice-Hall, Englewood Cliffs, New Jersey (1978)
Wei DC, Xiao YD, Shu B, Yan S, Biochem. Eng. J., 14, 45 (2003)
Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9 (1966)
Whitley RD, Van Cott KE, Wang NHL, Ind. Eng. Chem. Res., 32, 149 (1993)
Whitely RD, Wachter R, Liu F, Wang NHL, J. Chromatogr., 465, 137 (1989)
Yu Q, Wang NHL, Sep. Purif. Methods, 15, 127 (1986)