Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 30, 2006
Accepted August 28, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Prediction of VLE data for alternative refrigerant mixtures
Department of Chemical Engineering, Bapatla Engineering College, Bapatla-522101, India
Korean Journal of Chemical Engineering, January 2007, 24(1), 106-112(7), 10.1007/s11814-007-5018-z
Download PDF
Abstract
The inevitability of a disaster associated with the depletion of the ozone layer led to the decision to phase out conventional chlorine containing refrigerants and their mixtures. This necessitates the use of non-chlorine substances as refrigerants. In the present work, three different types of mixing rules, namely (i) the classical van der Waals one fluid mixing rule, (ii) the composition dependent mixing rules of the Margules type, and (iii) the conformal solution van der Waals mixing rules are used with the Peng-Robinson (PR) equation of state, to predict the VLE data of 27 alternative refrigerant mixtures, and the results are compared with the experimental data. It is found that the compositiondependent mixing rule coupled with the PR equation of state is quite suitable for predicting the VLE data.
Keywords
References
Barley MH, Morrison JD, O'Donnel A, Parker IB, Petherbridge S, Wheelhouse RW, Fluid Phase Equilib., 140(1-2), 183 (1997)
Benmekki EH, Mansoori GA, Fluid Phase Equilib., 32, 139 (1987)
Benmekki EH, Mansoori GA, Fluid Phase Equilib., 41, 43 (1988)
Bobbo S, Stryjeck R, Elvassore N, Bertucco A, Fluid Phase Equilib., 150, 343 (1998)
Bobbo S, Camporese R, J. Chem. Eng. Data, 44, 349 (1999)
Bobbo S, Fedele L, Scattolini N, Camporese R, Int. J. Thermophys., 21, 781 (2000)
Chung EY, Kim MS, J. Chem. Eng. Data, 42, 1126 (1997)
Fermeglia M, Pricl S, Fluid Phase Equilib., 166(1), 21 (1999)
Huron MJ, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Kim CN, Lee EH, Park YM, Yoo J, Kim KH, Lim JS, Lee BG, Int. J. Thermophys., 21, 871 (2000)
Kim CN, Park YM, J. Chem. Eng. Data, 45, 34 (2000)
Kleiber M, Fluid Phase Equilib., 92, 149 (1994)
Koo S, Chang J, Kim H, Lee BG, Lee J, Int. J. Thermophys., 21, 405 (2000)
Kwak TY, Mansoori GA, Chem. Eng. Sci., 41, 1303 (1986)
Lee BG, Park JY, Lim JS, Cho SY, Park KY, Chem. Eng. Data, 44, 190 (1999)
Lee BG, Park JY, Lim JS, Lee JW, Lee CH, J. Chem. Eng. Data, 45, 760 (2000)
Lim JS, Park JY, Lee BG, Lee YW, Kim JD, J. Chem. Eng. Data, 44, 1226 (1999)
Lim JS, Park JY, Lee BG, Kim JD, J. Chem. Eng. Data, 45, 734 (2000)
Lim JS, Park JY, Lee BG, Korean J. Chem. Eng., 22(6), 932 (2005)
Mathias PM, Copeman TW, Fluid Phase Equilib., 13, 91 (1983)
Mollerup J, Fluid Phase Equilib., 7, 121 (1981)
Nishiumi H, Akita H, Akiyama S, Korean J. Chem. Eng., 14(5), 359 (1997)
Nishiumi H, Ohno T, Korean J. Chem. Eng., 17(6), 668 (2000)
Patel NC, Teja AS, Chem. Eng. Sci., 37, 463 (1982)
Stryjek R, Vera JH, Can. J. Chem. Eng., 64, 323 (1986)
Tsonopoulas C, Heidman JL, Fluid Phase Equilib., 24, 1 (1985)
Benmekki EH, Mansoori GA, Fluid Phase Equilib., 32, 139 (1987)
Benmekki EH, Mansoori GA, Fluid Phase Equilib., 41, 43 (1988)
Bobbo S, Stryjeck R, Elvassore N, Bertucco A, Fluid Phase Equilib., 150, 343 (1998)
Bobbo S, Camporese R, J. Chem. Eng. Data, 44, 349 (1999)
Bobbo S, Fedele L, Scattolini N, Camporese R, Int. J. Thermophys., 21, 781 (2000)
Chung EY, Kim MS, J. Chem. Eng. Data, 42, 1126 (1997)
Fermeglia M, Pricl S, Fluid Phase Equilib., 166(1), 21 (1999)
Huron MJ, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Kim CN, Lee EH, Park YM, Yoo J, Kim KH, Lim JS, Lee BG, Int. J. Thermophys., 21, 871 (2000)
Kim CN, Park YM, J. Chem. Eng. Data, 45, 34 (2000)
Kleiber M, Fluid Phase Equilib., 92, 149 (1994)
Koo S, Chang J, Kim H, Lee BG, Lee J, Int. J. Thermophys., 21, 405 (2000)
Kwak TY, Mansoori GA, Chem. Eng. Sci., 41, 1303 (1986)
Lee BG, Park JY, Lim JS, Cho SY, Park KY, Chem. Eng. Data, 44, 190 (1999)
Lee BG, Park JY, Lim JS, Lee JW, Lee CH, J. Chem. Eng. Data, 45, 760 (2000)
Lim JS, Park JY, Lee BG, Lee YW, Kim JD, J. Chem. Eng. Data, 44, 1226 (1999)
Lim JS, Park JY, Lee BG, Kim JD, J. Chem. Eng. Data, 45, 734 (2000)
Lim JS, Park JY, Lee BG, Korean J. Chem. Eng., 22(6), 932 (2005)
Mathias PM, Copeman TW, Fluid Phase Equilib., 13, 91 (1983)
Mollerup J, Fluid Phase Equilib., 7, 121 (1981)
Nishiumi H, Akita H, Akiyama S, Korean J. Chem. Eng., 14(5), 359 (1997)
Nishiumi H, Ohno T, Korean J. Chem. Eng., 17(6), 668 (2000)
Patel NC, Teja AS, Chem. Eng. Sci., 37, 463 (1982)
Stryjek R, Vera JH, Can. J. Chem. Eng., 64, 323 (1986)
Tsonopoulas C, Heidman JL, Fluid Phase Equilib., 24, 1 (1985)