Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 30, 2006
Accepted September 18, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Potential changes of the cross section for rectangular microchannel with different aspect ratios
Hyo Song Lee
Ki Ho Kim
Jae Keun Yu
Soon Young Noh
Jae Ho Choi
Soo Kyung Yoon1
Chang-Soo Lee
Taek-Sung Hwang
Young Woo Rhee†
Department of Chemical and Biological Engineering, Chungnam National University, Daejeon 305-764, Korea 1Accreditation Board for Engineering Education of Korea, Seoul 135-513, Korea
Korean Journal of Chemical Engineering, January 2007, 24(1), 186-190(5), 10.1007/s11814-007-5030-3
Download PDF
Abstract
In this study, we investigated the potential changes of a rectangular cross section having different aspect ratio and area. A 2D Poisson-Boltzmann equation was used to model the electric double layer field of the cross section. The potential change of the cross section was studied numerically with FEMLAB 3.0 to understand the geometry effects of the rectangular microchannel used for electroosmotic flow. According to the result, the cross-section geometry shows significant influences on the potential field. The potential distribution shows same tendency with various cross-section areas in the same aspect ratio. The potential gradient increases with the increase of the cross section area.
References
Arulanandam S, Li D, Colloids Surf. A: Physicochem. Eng. Asp., 161, 89 (2000)
Chun MS, Korean J. Chem. Eng., 19(5), 729 (2002)
Conlisk AT, McFerran J, Zheng Z, Hansford D, Anal. Chem., 74, 2139 (2002)
Gao YD, Wong TN, Yang C, Ooi KT, J. Colloid Interface Sci., 284(1), 306 (2005)
Kou Q, Yesilyurt I, Studer V, Belotti M, Cambril E, Chen Y, Microelectron. Eng., 73, 876 (2004)
Levine S, Mrriott JR, Neale G, Epstein N, J. Colloid Interface Sci., 52, 136 (1975)
Li D, Electrokinetics in Microfluidics, Elsevier (2004)
Manz A, Becker H, Microsystem Technology in Chemistry and Life Science, Springer (1998)
Ren CL, Li DQ, J. Colloid Interface Sci., 294(2), 482 (2006)
Stone HA, Kim S, AIChE J., 47(6), 1250 (2001)
Bentrup U, Bruckner A, Richter M, Fricke R, Appl. Catal. B: Environ., 32(4), 229 (2001)
Bosch H, Janssen F, Catal. Today, 2, 369 (1988)
Chun MS, Korean J. Chem. Eng., 19(5), 729 (2002)
Conlisk AT, McFerran J, Zheng Z, Hansford D, Anal. Chem., 74, 2139 (2002)
Gao YD, Wong TN, Yang C, Ooi KT, J. Colloid Interface Sci., 284(1), 306 (2005)
Kou Q, Yesilyurt I, Studer V, Belotti M, Cambril E, Chen Y, Microelectron. Eng., 73, 876 (2004)
Levine S, Mrriott JR, Neale G, Epstein N, J. Colloid Interface Sci., 52, 136 (1975)
Li D, Electrokinetics in Microfluidics, Elsevier (2004)
Manz A, Becker H, Microsystem Technology in Chemistry and Life Science, Springer (1998)
Ren CL, Li DQ, J. Colloid Interface Sci., 294(2), 482 (2006)
Stone HA, Kim S, AIChE J., 47(6), 1250 (2001)
Bentrup U, Bruckner A, Richter M, Fricke R, Appl. Catal. B: Environ., 32(4), 229 (2001)
Bosch H, Janssen F, Catal. Today, 2, 369 (1988)