Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 21, 2006
Accepted July 30, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Degradation of azo dye by an electroenzymatic method using horseradish peroxidase immobilized on porous support
Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea
shmoon@gist.ac.kr
Korean Journal of Chemical Engineering, January 2007, 24(1), 72-78(7), 10.1007/s11814-007-5012-5
Download PDF
Abstract
An electroenzymatic process is an interesting approach that combines enzyme catalysis and electrode reactions. Degradation of orange II by an electroenzymatic method using horseradish peroxidase (HRP) bound on inexpensive and stable inorganic beads was studied in a continuous electrochemical reactor with in situ generation of hydrogen peroxide. HRP was immobilized on Celite®R-646 as a porous support with 2% aqueous glutaraldehyde (GA), while the protein and activity yield were 3.6 mg protein and 5,280 U per g Celite, respectively. Based on a parametric study, the operating conditions were chosen, and over 90% of the degradation efficiency of orange II was maintained during continuous operation for 36 hr. From the results of GC/MS analysis, degradation products were identified and a possible breakdown pathway of orange II was also proposed. This study shows the feasibility of an electroenzymatic process to degrade azo dye compounds in wastewater.
Keywords
References
Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed. Wieley (2000)
Bauer C, Jacques P, Kalt A, J. Photochem. Photobiol. A-Chem., 140, 87 (2001)
Brown DH, Hitz HR, Schafer L, Chemosphere, 10, 245 (1981)
Brown MA, DeVito SC, Environ. Sci. Technol., 23, 249 (1993)
Cabral JMS, Kennedy JF, Covalent and coordination immobilization of proteins, From: Protein immobilization - fundamentals and applications, Ed by: Taylor, R.F. Marcel Dekker, INC., New York, NY, pp. 73-138 (1991)
Cao JS, Wei LP, Haung QG, Wang LS, Han SK, Chemosphere, 38, 565 (1999)
Cardosi MF, Covalent immobilization of enzymes to graphitic particles, From: Methods in Biotechnology - Immobilization of Enzymes and Cells, Edited by: Bickerstaff, G. F. Humana Press Inc., Totowa, NJ, pp. 217-227 (1997)
Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK, Korean J. Chem. Eng., 21(2), 398 (2004)
Chivukula M, Spadaro T, Renganathan V, Biochem., 34, 7765 (1995)
Daneshvar N, Ashassi-Sorkhabi H, Tizpar A, Sep. Purif. Technol., 31, 153 (2003)
Haung MT, Miwa GT, Lu AYH, J. Biol. Chem., 254, 3930 (1979)
Janolino VG, Swaisgood HE, Biotechnol. Bioeng., 24, 1069 (1982)
Kim GY, Moon SH, Korean J. Chem. Eng., 22(1), 52 (2005)
Kim GY, Lee KB, Cho SH, Shim J, Moon SH, J. Hazard. Matt., B126, 183 (2005)
Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Environ. Sci. Technol., 32, 3821 (1998)
Kulla HG, Klausener F, Meyer U, Ludeke B, Leisinger T, Arch. Microbiol., 135, 1 (1983)
Lee KB, Gu MB, Moon SH, J. Chem. Technol. Biotechnol., 76, 1 (2001)
Lee KB, Electronenzymatic process for veratryl alcohol oxidation and degradation of 2,4,6-trinitrotoluene, Thesis for degree of Ph.D., Dep.Environ. Sci. & Eng., K-JIST (2002)
Lee KB, Gu MB, Moon SH, Water Res., 37, 983 (2003)
Na YS, Kim DH, Lee CH, Lee SW, Park YS, Oh YK, Park SH, Song SK, Korean J. Chem. Eng., 21(2), 430 (2004)
Nam S, Tratnyek PG, Water Res., 34, 1837 (2000)
Paszczynski A, Pastigrigsby MB, Goszczynski S, Crawford RL, Crawford DL, Appl. Environ. Microbiol., 58, 3598 (1992)
Pina DG, Shnyrova AV, Gavilanes F, Rodriguez A, Leal F, Roig MG, Sakharov IY, Zhadan GG, Villar E, Shnyrov VL, Eur. J. Biochem., 268, 120 (2001)
Shuler ML, Kargi F, Bioprocess engineering - basic concepts, Prentice Hall PTR, Englewood Cliffs, NJ, pp 58-102 (1992)
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Prevenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klent DC, Anal. Biochem., 150, 76 (1985)
Spadaro JT, Gold M, Renganathan V, Appl. Environ. Microbiol., 58, 2397 (1992)
Spadaro JT, Isabelle L, Renganathan V, Environ. Sci. Technol., 28, 1389 (1994)
Stylidi M, Kondarides DI, Verykios XE, Appl. Catal. B: Environ., 40(4), 271 (2003)
Vaidya AA, Datye KV, Colourage, 14, 3 (1982)
Vasudevan PT, Li LO, Appl. Biochem. Biotechnol., 60, 73 (1995)
Zhang SJ, Yu HQ, Li QR, Chemosphere, 61, 1003 (2005)
Zheng LY, Xiao YL, Korean J. Chem. Eng., 21(1), 201 (2004)
Bauer C, Jacques P, Kalt A, J. Photochem. Photobiol. A-Chem., 140, 87 (2001)
Brown DH, Hitz HR, Schafer L, Chemosphere, 10, 245 (1981)
Brown MA, DeVito SC, Environ. Sci. Technol., 23, 249 (1993)
Cabral JMS, Kennedy JF, Covalent and coordination immobilization of proteins, From: Protein immobilization - fundamentals and applications, Ed by: Taylor, R.F. Marcel Dekker, INC., New York, NY, pp. 73-138 (1991)
Cao JS, Wei LP, Haung QG, Wang LS, Han SK, Chemosphere, 38, 565 (1999)
Cardosi MF, Covalent immobilization of enzymes to graphitic particles, From: Methods in Biotechnology - Immobilization of Enzymes and Cells, Edited by: Bickerstaff, G. F. Humana Press Inc., Totowa, NJ, pp. 217-227 (1997)
Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK, Korean J. Chem. Eng., 21(2), 398 (2004)
Chivukula M, Spadaro T, Renganathan V, Biochem., 34, 7765 (1995)
Daneshvar N, Ashassi-Sorkhabi H, Tizpar A, Sep. Purif. Technol., 31, 153 (2003)
Haung MT, Miwa GT, Lu AYH, J. Biol. Chem., 254, 3930 (1979)
Janolino VG, Swaisgood HE, Biotechnol. Bioeng., 24, 1069 (1982)
Kim GY, Moon SH, Korean J. Chem. Eng., 22(1), 52 (2005)
Kim GY, Lee KB, Cho SH, Shim J, Moon SH, J. Hazard. Matt., B126, 183 (2005)
Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Environ. Sci. Technol., 32, 3821 (1998)
Kulla HG, Klausener F, Meyer U, Ludeke B, Leisinger T, Arch. Microbiol., 135, 1 (1983)
Lee KB, Gu MB, Moon SH, J. Chem. Technol. Biotechnol., 76, 1 (2001)
Lee KB, Electronenzymatic process for veratryl alcohol oxidation and degradation of 2,4,6-trinitrotoluene, Thesis for degree of Ph.D., Dep.Environ. Sci. & Eng., K-JIST (2002)
Lee KB, Gu MB, Moon SH, Water Res., 37, 983 (2003)
Na YS, Kim DH, Lee CH, Lee SW, Park YS, Oh YK, Park SH, Song SK, Korean J. Chem. Eng., 21(2), 430 (2004)
Nam S, Tratnyek PG, Water Res., 34, 1837 (2000)
Paszczynski A, Pastigrigsby MB, Goszczynski S, Crawford RL, Crawford DL, Appl. Environ. Microbiol., 58, 3598 (1992)
Pina DG, Shnyrova AV, Gavilanes F, Rodriguez A, Leal F, Roig MG, Sakharov IY, Zhadan GG, Villar E, Shnyrov VL, Eur. J. Biochem., 268, 120 (2001)
Shuler ML, Kargi F, Bioprocess engineering - basic concepts, Prentice Hall PTR, Englewood Cliffs, NJ, pp 58-102 (1992)
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Prevenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klent DC, Anal. Biochem., 150, 76 (1985)
Spadaro JT, Gold M, Renganathan V, Appl. Environ. Microbiol., 58, 2397 (1992)
Spadaro JT, Isabelle L, Renganathan V, Environ. Sci. Technol., 28, 1389 (1994)
Stylidi M, Kondarides DI, Verykios XE, Appl. Catal. B: Environ., 40(4), 271 (2003)
Vaidya AA, Datye KV, Colourage, 14, 3 (1982)
Vasudevan PT, Li LO, Appl. Biochem. Biotechnol., 60, 73 (1995)
Zhang SJ, Yu HQ, Li QR, Chemosphere, 61, 1003 (2005)
Zheng LY, Xiao YL, Korean J. Chem. Eng., 21(1), 201 (2004)