Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 15, 2006
Accepted November 7, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulation of bubbling fluidized bed of fine particles using CFD
Chemical Process Technology Lab, SK Corporation, Daejeon 305-712, Korea 1Department of Chem. Eng., Sungkyunkwan University, Suwon 440-746, Korea
Korean Journal of Chemical Engineering, May 2007, 24(3), 445-450(6), 10.1007/s11814-007-0077-8
Download PDF
Abstract
Computational fluid dynamics (CFD) simulation for bubbling fluidized bed of fine particles was carried out. The reliability and accuracy of CFD simulation was investigated by comparison with experimental data. The experimental facility of the fluidized bed was 6 cm in diameter and 70 cm in height and an agitator of pitched-blade turbine type was installed to prevent severe agglomeration of fine particles. Phosphor particles were employed as the bed material. Particle size was 22 μm and particle density was 3,938 kg/m3. CFD simulation was carried by two-fluid module which was composed of viscosity input model and fan model. CFD simulation and experiment were carried out by changing the fluidizing gas velocity and agitation velocity. The results showed that CFD simulation results in this study showed good agreement with experimental data. From results of CFD simulation, it was observed that the agitation prevents agglomeration of fine particles in a fluidized bed.
Keywords
References
Samuelsberg A, Hjertager BH, AIChE J., 42(6), 1536 (1996)
Mathiesen V, Solberg T, Arastoopour H, Hjertager BH, AIChE J., 45(12), 2503 (1999)
Arastoopour H, Gidaspow D, Powder Technol., 22, 77 (1979)
Tsuo YP, Gidaspow D, AIChE J., 36, 885 (1990)
Gidaspow D, Appl. Math. Rev., 39(1), 1 (1986)
Lyczkowsky RW, Folga S, Chang SL, Bouillard JX, Wang CS, Berry GF, Gidaspow D, Can. Chem. Eng., 67, 465 (1989)
Ding J, Lyczkowski RW, Powder Technol., 73, 127 (1992)
Kostamis P, Richards CW, Markatos NC, Physico Chem. Hydrody., 9, 219 (1987)
Theologos KN, Markatos NC, Trans. IchemE., 70, 239 (1992)
Theologos KN, Markatos NC, AIChE J., 39(6), 1007 (1993)
Matonis D, Gidaspow D, Bahary M, AIChE J., 48(7), 1413 (2002)
Zalc JM, Szalai ES, Alvarez MM, Muzzio FJ, AIChE J., 48(10), 2124 (2002)
Ortiz-Arroyo A, Larachi F, Grandjean BPA, Roy S, AIChE J., 48(8), 1596 (2002)
Anderson K, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327 (1995)
Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787 (1999)
Benyahia S, Arastoopour H, Knowlton T, Fluidization X, Proc. Engineering Foundation Conf. on Fluidization, L.-S. Fan and T. Knowlton, Eds., New York (1998)
Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press (1994)
Sinclair JL, Jackson R, AIChE J., 35, 1473 (1989)
Elghobashi SE, Abou-Arab TW, Phys. Fluids, 26, 931 (1983)
Chen CP, Can. J. Chem. Eng., 63, 349 (1985)
Wang ZL, Kwauk M, Li HZ, Chem. Eng. Sci., 53(3), 377 (1998)
Lyczkowsky RW, Gamwo IK, Dobran F, Ali H, Chao BT, Chen MM, Gidaspow D, Powder Technol., 76, 65 (1993)
Ding J, Gidaspow D, AIChE J., 36(4), 523 (1990)
Xu BH, Yu AB, Chem. Eng. Sci., 52(16), 2785 (1997)
Pain CC, Mansoorzadeh S, Gomes JLM, de Oliveira CRE, Powder Technol., 128(1), 56 (2002)
Savaqe SB, Theory of dispersed multiphase flow, R. E. Meyer, Eds., Academic Press, New York (1983)
Mawatari Y, Tatemoto Y, Noda K, Powder Technol., 131(1), 66 (2003)
Malhotra K, Law-Kwet-Cheong L, Mujumdar AS, Powder Technol., 39, 101 (1984)
Park J, Kim J, Cho SH, Han KH, Yi CK, Jin GT, Korean J. Chem. Eng., 16(5), 659 (1999)
Mathiesen V, Solberg T, Arastoopour H, Hjertager BH, AIChE J., 45(12), 2503 (1999)
Arastoopour H, Gidaspow D, Powder Technol., 22, 77 (1979)
Tsuo YP, Gidaspow D, AIChE J., 36, 885 (1990)
Gidaspow D, Appl. Math. Rev., 39(1), 1 (1986)
Lyczkowsky RW, Folga S, Chang SL, Bouillard JX, Wang CS, Berry GF, Gidaspow D, Can. Chem. Eng., 67, 465 (1989)
Ding J, Lyczkowski RW, Powder Technol., 73, 127 (1992)
Kostamis P, Richards CW, Markatos NC, Physico Chem. Hydrody., 9, 219 (1987)
Theologos KN, Markatos NC, Trans. IchemE., 70, 239 (1992)
Theologos KN, Markatos NC, AIChE J., 39(6), 1007 (1993)
Matonis D, Gidaspow D, Bahary M, AIChE J., 48(7), 1413 (2002)
Zalc JM, Szalai ES, Alvarez MM, Muzzio FJ, AIChE J., 48(10), 2124 (2002)
Ortiz-Arroyo A, Larachi F, Grandjean BPA, Roy S, AIChE J., 48(8), 1596 (2002)
Anderson K, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327 (1995)
Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787 (1999)
Benyahia S, Arastoopour H, Knowlton T, Fluidization X, Proc. Engineering Foundation Conf. on Fluidization, L.-S. Fan and T. Knowlton, Eds., New York (1998)
Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press (1994)
Sinclair JL, Jackson R, AIChE J., 35, 1473 (1989)
Elghobashi SE, Abou-Arab TW, Phys. Fluids, 26, 931 (1983)
Chen CP, Can. J. Chem. Eng., 63, 349 (1985)
Wang ZL, Kwauk M, Li HZ, Chem. Eng. Sci., 53(3), 377 (1998)
Lyczkowsky RW, Gamwo IK, Dobran F, Ali H, Chao BT, Chen MM, Gidaspow D, Powder Technol., 76, 65 (1993)
Ding J, Gidaspow D, AIChE J., 36(4), 523 (1990)
Xu BH, Yu AB, Chem. Eng. Sci., 52(16), 2785 (1997)
Pain CC, Mansoorzadeh S, Gomes JLM, de Oliveira CRE, Powder Technol., 128(1), 56 (2002)
Savaqe SB, Theory of dispersed multiphase flow, R. E. Meyer, Eds., Academic Press, New York (1983)
Mawatari Y, Tatemoto Y, Noda K, Powder Technol., 131(1), 66 (2003)
Malhotra K, Law-Kwet-Cheong L, Mujumdar AS, Powder Technol., 39, 101 (1984)
Park J, Kim J, Cho SH, Han KH, Yi CK, Jin GT, Korean J. Chem. Eng., 16(5), 659 (1999)