Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 12, 2007
Accepted March 10, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Modification of Nafion membranes by incorporation of cationic polymers for reduction of methanol permeability
Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Gyunggi 440-746, Korea
djkim@skku.edu
Korean Journal of Chemical Engineering, November 2007, 24(6), 1101-1105(5), 10.1007/s11814-007-0128-1
Download PDF
Abstract
A small amount of basic polymer was incorporated in the Nafion membrane. Compared with the re-cast Nafion membrane, the Nafion/basic polymer membrane reduced the methanol permeability considerably. The equilibrium water uptake and proton conductivity decreased, but the thermal and mechanical stability was enhanced with increasing concentration of basic polymer. These property changes were caused by formation of cation/anion complex between acidic Nafion and basic polymer molecules. The effects of the types and molecular weights of basic polymers on the methanol permeability and proton conductivity were not significant.
References
Kordesch K, Simader G, Fuel cells and their applications, VCH, Weinheim (1996)
Larminie J, Dicks A, Fuel cell systems explained, John Wiley & Sons Inc., England (2000)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Arico AS, Srinivasan S, Antonucci V, Fuel Cells, 1, 134 (2001)
Heinzel A, Barragan VM, J. Power Sources, 84(1), 70 (1999)
Sauk J, Byun J, Kang Y, Kim H, Korean J. Chem. Eng., 22(4), 605 (2005)
Carretta N, Tricoli V, Picchioni F, J. Membr. Sci., 166(2), 189 (2000)
Gebel G, Polymer, 41(15), 5829 (2000)
Dimitrova P, Friedrich KA, Vogt B, Stimming U, J. Electroanal. Chem., 532(1-2), 75 (2002)
Dimitrova P, Friedrich KA, Vogt B, Stimming U, J. Electroanal. Chem., 532(1-2), 75 (2002)
Kim J, Kim B, Jung B, J. Membr. Sci., 207(1), 129 (2002)
Kreuer KD, J. Membr. Sci., 185(1), 29 (2001)
Hsu WY, Barkley JR, Meakin P, Macromolecules, 13, 198 (1980)
Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)
Bae B, Ha HY, Kim D, J. Electrochem. Soc., 152(7), 1366 (2005)
Larminie J, Dicks A, Fuel cell systems explained, John Wiley & Sons Inc., England (2000)
Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
Arico AS, Srinivasan S, Antonucci V, Fuel Cells, 1, 134 (2001)
Heinzel A, Barragan VM, J. Power Sources, 84(1), 70 (1999)
Sauk J, Byun J, Kang Y, Kim H, Korean J. Chem. Eng., 22(4), 605 (2005)
Carretta N, Tricoli V, Picchioni F, J. Membr. Sci., 166(2), 189 (2000)
Gebel G, Polymer, 41(15), 5829 (2000)
Dimitrova P, Friedrich KA, Vogt B, Stimming U, J. Electroanal. Chem., 532(1-2), 75 (2002)
Dimitrova P, Friedrich KA, Vogt B, Stimming U, J. Electroanal. Chem., 532(1-2), 75 (2002)
Kim J, Kim B, Jung B, J. Membr. Sci., 207(1), 129 (2002)
Kreuer KD, J. Membr. Sci., 185(1), 29 (2001)
Hsu WY, Barkley JR, Meakin P, Macromolecules, 13, 198 (1980)
Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. B: Polym. Phys., 19, 1687 (1981)
Bae B, Ha HY, Kim D, J. Electrochem. Soc., 152(7), 1366 (2005)