Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 11, 2007
Accepted July 27, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fracture properties of silica/carbon black-filled natural rubber vulcanizates
Department of Nano-Chemical/Environmental Engineering, Daebul University, Chonnam 526-702, Korea 1Department of Biotechnology, Chosun University, Gwangju 501-759, Korea
Korean Journal of Chemical Engineering, November 2007, 24(6), 975-979(5), 10.1007/s11814-007-0107-6
Download PDF
Abstract
Crack growth property of natural rubber (NR) vulcanizate with varying silica/carbon black content was examined. Tensile specimen with edge cut was used for estimating fracture properties. All filled NR specimens showed critical cut-size (Ccr), which is related to abrupt decrease in tensile strength. Carbon black-filled NR, S0 (Si/N330=0/50) has higher tensile strength than equivalently loaded silica-filled NR vulcanizates, S5 (Si/N330=50/0). When the precut size of specimen was less than critical cut-size, tensile strength of S1 (Si/N330=10/40) composition was the highest and that of S5 was the lowest. The critical cut-size passes through a maximum for S2 (Si/N330=20/30) and then decreases gradually with silica loading. An interesting result was that silica and carbon black-blended compounds gave higher critical cut size than the all-carbon black compounds, S0. The inherent flaw size decreased from 246 μm for S0 to 80 μm for S5 as the silica content increased.
References
Medalia A, J. Colloid Interface Sci., 32, 115 (1970)
Kraus G, Rubber Chem. Technol., 49, 199 (1971)
Jeon GS, Seo G, Korean J. Chem. Eng., 20(3), 496 (2003)
Jeon GS, Han MH, Seo G, Korean J. Chem. Eng., 15(3), 317 (1998)
Lin C, Hergenerother WL, Hilton AS, Rubber Chem. Technol., 75, 215 (2002)
Suzuki N, Ito M, Yatsuyanagi F, Polymer (Japan), 46, 193 (2005)
Walker LA, Kautsch, Gummi Kunstst., 38, 494 (1985)
Wang MJ, Wolff S, Donnet JB, Rubber Chem. Technol., 64, 559 (1991)
Park SS, Park BH, Song KC, Kim SK, Polym.(Korea), 24(2), 220 (2000)
Cao Q, Cui W, China Rubber Ind., 48, 389 (2001)
Hamed GR, Kim HJ, Rubber Chem. Technol., 72, 895 (1999)
Beatty JR, Miksch BJ, Rubber Chem. Technol., 55, 1531 (1982)
Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1952)
Cook J, Gordon JE, Proc. Roy. Soc., A282, 508 (1964)
De D, Gent AN, J. Mater. Sci., 19, 3612 (1984)
Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1953)
Medalia AI, Rubber Chem. Technol., 60, 45 (1987)
Thomas AG, Whittle JM, Rubber Chem. Technol., 43, 222 (1970)
Hamed GR, Rubber Chem. Technol., 56, 244 (1983)
Kraus G, Rubber Chem. Technol., 49, 199 (1971)
Jeon GS, Seo G, Korean J. Chem. Eng., 20(3), 496 (2003)
Jeon GS, Han MH, Seo G, Korean J. Chem. Eng., 15(3), 317 (1998)
Lin C, Hergenerother WL, Hilton AS, Rubber Chem. Technol., 75, 215 (2002)
Suzuki N, Ito M, Yatsuyanagi F, Polymer (Japan), 46, 193 (2005)
Walker LA, Kautsch, Gummi Kunstst., 38, 494 (1985)
Wang MJ, Wolff S, Donnet JB, Rubber Chem. Technol., 64, 559 (1991)
Park SS, Park BH, Song KC, Kim SK, Polym.(Korea), 24(2), 220 (2000)
Cao Q, Cui W, China Rubber Ind., 48, 389 (2001)
Hamed GR, Kim HJ, Rubber Chem. Technol., 72, 895 (1999)
Beatty JR, Miksch BJ, Rubber Chem. Technol., 55, 1531 (1982)
Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1952)
Cook J, Gordon JE, Proc. Roy. Soc., A282, 508 (1964)
De D, Gent AN, J. Mater. Sci., 19, 3612 (1984)
Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1953)
Medalia AI, Rubber Chem. Technol., 60, 45 (1987)
Thomas AG, Whittle JM, Rubber Chem. Technol., 43, 222 (1970)
Hamed GR, Rubber Chem. Technol., 56, 244 (1983)