ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 1, 2006
Accepted March 6, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Media configuration and recirculation of upflow anaerobic floating filter for piggery wastewater treatment

School of Civil and Environmental Engineering, Kumoh National Institute of Technology, Gumi 730-701, Korea 1Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand 2School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klongluang, Pathumthani, Thailand 3Water Environment and Remediation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
dlee@kumoh.ac.kr
Korean Journal of Chemical Engineering, November 2007, 24(6), 980-988(9), 10.1007/s11814-007-0108-5
downloadDownload PDF

Abstract

An upflow anaerobic floating filter media (UAFF) reactor was applied to the treatment of synthetic and real piggery wastewater. The effect of media configuration and internal recirculation on the system performance was studied. In the first experiment, three-UAFF reactors filled with different media, i.e., polypropylene beads, sponge cubes and coconut fiber were continuously fed with synthetic wastewater at upflow velocity of 0.04 m h.1. The COD removal efficiency in the reactor filled with sponge cubes was highest at 90%, whereas the others filled with polypropylene beads and coconut fibers with lower specific surface area were about 80%. In the second experiment, three-UAFF reactors with sponge were applied to treat real piggery wastewater. COD removal efficiencies were found to be about 80% and methane production rate of 0.26 l lr-1d-1. The system performance could be slightly improved by 10% when applying internal recirculation. A sludge blanket (60-70% of total biomass) plays an important role in the system when applied to the treatment of piggery wastewater containing high suspended solid concentration.

References

Henze M, Harremoes P, Water Sci. Technol., 15, 1 (1983)
Shu L, Lee SH, Jegatheesan V, Environ. Eng. Res., 17(2), 75 (2002)
Lee SH, Park JC, Brissonneau D, Environ. Eng. Res., 8(3), 107 (2003)
Lee MG, Hano T, Korean J. Chem. Eng., 18(2), 178 (2001)
Salkinoja-Salonen MS, Nyns EJ, Sutton PM, van den Berg L, Wheatley ED, Water Sci. Technol., 15, 305 (1983)
APHA, Standard methods for the examination of water and wastewater, 20th Ed. American Public Health Association, Washington D.C. (1998)
Schiener P, Nachaiyasit S, Stuckey DC, Environ. Technol., 19, 391 (1998)
Park JH, Park JK, Korean J. Chem. Eng., 20(1), 83 (2003)
Aquino SF, Stuckey DC, Water Sci. Technol., 45, 127 (2002)
Barker DJ, Mannucchi GA, Salvi SM, Stuckey DC, Water Res., 33, 2499 (1999)
Kuo WC, Sneve MA, Parkin GF, Wat. Environ. Res., 68, 279 (1996)
Noguera DR, Araki N, Rittmann BE, Water Sci. Technol., 30, 339 (1994)
Goodwin JAS, Wase DAJ, Forster CF, Bioresour. Technol., 41, 71 (1992)
van Loosdrecht MCM, Eikelbloom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ, Water Sci. Technol., 32, 35 (1995)
Park JA, Hur JM, Son BS, Lee JH, Korean J. Chem. Eng., 18(4), 486 (2001)
Zeeman G, Sutter K, Vens T, Koster M, Wellinger A, Biological Wastes, 26, 15 (1988)
Chen MJ, Zhang Z, Bott TR, Biotechnol. Tech., 12, 875 (1998)
Noguera DR, Araki N, Rittmann BE, Biotechnol. Bioeng., 44(9), 1040 (1994)
Poels J, Assche P, Van P, Verstraete W, Biotechnol. Lett., 6, 747 (1984)
Tay JH, Jeyaseelan S, Show KY, Water Sci. Technol., 34, 453 (1996)
Hudson JW, Pohland FG, Pendergrass D, Proceeding of the 33rd Industrial Waste Conference, May 9, 10 and 11, 1978, Purdue University, West Lafayette, Indiana. Ann Arbor Science, Ann Arbor, Mich., 560-574 (1978)
LO KV, LIAO PH, GAO YC, Bioresour. Technol., 47(2), 153 (1994)
Elmitwalli TA, Zandvoort MH, Zeeman G, Bruning H, Lettinga G, Water Sci. Technol., 39, 177 (1999)
Jegatheesan V, Lee SH, Visvanathan C, Shu L, Marzella M, Environ. Eng. Res., 4(4), 283 (1999)
Domingues MR, Araujo JC, Varesche MBA, Vazoller RF, Water Sci. Technol., 45, 27 (2002)
Ranade DR, Garade RV, Microbiological Aspects of Anaerobic Digestion: Laboratory Manual, Maharashtra Association for the Cultivation of Science, Research Institute, India (1988)
Ng WK, Jegatheesan VR, Lee SH, Korean J. Chem. Eng., 23(2), 333 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로