ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 14, 2007
Accepted October 4, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of synthesizing leucine-binding nano-sized magnetite by a two-step transformation

1Department of Chemical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea 2Department of Chemistry, South China Normal University, Guangzhou 510631, P.R.China
Korean Journal of Chemical Engineering, January 2008, 25(1), 144-148(5), 10.1007/s11814-008-0026-1
downloadDownload PDF

Abstract

The optimum conditions for synthesizing leucine (Leu)-binding nano-sized magnetite (NSM) particles by a two-step transformation (TST) process were studied. The formation and magnetization of as-synthesized NSM particles were investigated through variation of the acidity, the type of surface modifier, and the nature of the acid for pH adjustment. With increased acidity, the saturation magnetization of the NSM particles decreased, but the amount of Leu coated on the surface of NSM particles increased. After the influence of hydroxyl (OH.) groups on the surface of NSM particles was removed by using the dicarboxyl anion (C2O42.) as a ligand in the first step, Leu was successfully bound with NSM particles in the second step. However, when polyethylene glycol (PEG) was used as a surface modifier, it was difficult to form the Leu-to-NSM particle complex. In terms of the acid used to modify pH, H2SO4 was slightly less effective than HCl in achieving saturation magnetization because the coordination for SO42. anions is stronger than that of Cl. anions. The preparation of other amino acid-binding NSM particles can be optimized in an analogous manner.

References

Tie SL, Lin YQ, Lee HC, Bae YS, Lee CH, Colloids Surf. A: Physicochem. Eng. Asp., 273, 75 (2006)
Tie SL, Lee HC, Bae YS, Kim MB, Lee K, Lee CH, Colloids Surf. A: Physicochem. Eng. Asp., 293, 278 (2007)
Berry CC, Curtis ASG, J. Phys. D-Appl. Phys., 36, R198 (2003)
Arakaki A, Webb J, Matsunaga T, J. Biol. Chem., 278, 8745 (2003)
Liu XY, Ding XB, Zheng ZH, Peng YX, Chan ASC, Yip CW, Long XP, Polym. Int., 52, 235 (2003)
Yoza B, Arakaki A, Matsunaga T, J. Biotechnol., 101, 219 (2003)
Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T, J. Biosci. Bioeng., 95, 21 (2003)
Rousseau V, Pouliquen D, Darcel F, Jallet P, Jeune JJL, Magn. Reson. Mater. Bio. Phys. Med., 6, 13 (1998)
Wilson KS, Harris LA, Goff JD, Riffle JS, Dailey JP, European Cells and Materials, 3, 206 (2002)
Igartua M, Saulnier P, Heurtault B, Pech B, Proust JE, Pedraz JL, Benoit JP, Int. J. Pharm., 233, 149 (2002)
Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R, J. Magn. Magn. Mater., 225, 118 (2001)
Gravinaa PP, Santosa JS, Figueiredoa LC, Netoa KS, Silvaa MFD, Buskec N, Gansauc C, Moraisa PC, J. Magn. Magn. Mater., 252, 393 (2002)
Tallberg T, J. Aust. Coll. Nutr. Environ. Med., 22, 3 (2003)
Ventrucci1 G, de Mello MAR, Cristina M, Gomes-Marcondes C, BMC Cancer, 2, 7 (2002)
Evoy D, Lieberman M, Fahey TJ, Daly JM, Nutrition, 14, 611 (1998)
Ramirez LP, Landfester K, Macromol. Chem. Phys., 204, 22 (2003)
Bica D, Vekas L, Rasa M, J. Magn. Magn. Mater., 252, 10 (2002)
Liu XY, Ding XB, Zheng ZH, Peng YX, Chan ASC, Yip CW, Long XP, Polym. Int., 52, 235 (2003)
Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N, Colloids Surf. A: Physicochem. Eng. Asp., 212, 219 (2003)
Deng JG, Ding XB, Zhang WC, Peng YX, Wang JH, Long XP, Li P, Chan ASC, Polymer, 43(8), 2179 (2002)
Morais PC, da Silva SW, Soler MAG, Buske N, Biomol. Eng., 17, 49 (2001)
Sousa MH, Tourinho FA, Rubim JC, J. Raman Spectrosc., 31, 185 (2000)
Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G, Langmuir, 17(25), 7907 (2001)
Hou Y, Yu J, Gao S, J. Mater. Chem., 13, 1983 (2003)
Kazuo, in Nakamoto. Infrared and raman spectra of inorganic and coordination compounds, 232, 245, 477, 478, Wiley-Interscience Publication (1986)
Nelson DL, Cox MM, in Principles of biochemistry, in Principles of biochemistry,, 118 (2000)
Nara M, Torii H, Tasumi M, J. Phys. Chem., 100(51), 19812 (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로