Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 2, 2006
Accepted July 9, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Testing of PEM fuel cell performance by electrochemical impedance spectroscopy: Optimum condition for low relative humidification cathode
Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
mali.h@chula.ac.th
Korean Journal of Chemical Engineering, March 2008, 25(2), 245-252(8), 10.1007/s11814-008-0044-z
Download PDF
Abstract
Electrochemical impedance spectroscopy (EIS) was used to investigate the influence of several parameters on the performance of PEMFC. The applied frequency was in the range of 50 mHz-10 kHz. The experiment was designed by using a 2k factorial design to identify the effects of various parameters including cell voltage, flow rates of gaseous fuels and cell temperature at the saturated humidification in anode and 60% relative humidity cathode. The results indicated that the cell temperature, cell voltage and interactions of cell voltage, flow rate of H2 and O2 had a significant effect on the cell performance. In addition, the flow rate of O2 had a strong effect on the ohmic resistance and the charge transfer resistance in the system. Models describing the relationship between previous parameters and ohmic resistance, charge transfer resistance and capacitance were also developed.
Keywords
References
Hirano S, Kim J, Srinivasan S, Electrochim. Acta, 42(10), 1587 (1997)
Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H, J. Electroanal. Chem., 517(1-2), 85 (2001)
Hawut W, Hunsom M, Pruksathorn K, Korean J. Chem. Eng., 23(4), 555 (2006)
Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzalez ER, Electrochim. Acta, 43(24), 3761 (1998)
Hunsom M, Dunyushkina L, Adler S, Korean J. Chem. Eng., 23(5), 720 (2006)
Jorgensen MJ, Primdahl S, Morgensen M, Electrochim. Acta, 44(24), 4195 (1999)
Lee HK, Mater. Chem. Phys., 77, 639 (2002)
Lai CM, Lin JC, Hsueh KL, Hwang CP, Tsay KC, Tsai L, Peng YM, Int. J. Hydrog. Energy, Article in Press
Du CY, Zhao TS, Xu C, J. Power Sources, 167(2), 265 (2007)
Du CY, Zhao TS, Yang WW, Electrochim. Acta, 52(16), 5266 (2007)
Wagner N, Schnurnberger W, Muller B, Lang M, Electrochim. Acta, 43(24), 3785 (1998)
Eikerling M, Kornyshev AA, J. Electroanal. Chem., 475(2), 107 (1999)
Romero-Castanon T, Arriaga LG, Cano-Castillo U, J. Power Sources, 118(1-2), 179 (2003)
Easton EB, Pickup PG, Electrochim. Acta, 50(12), 2469 (2005)
Freire TJP, Gonzalez ER, J. Electroanal. Chem., 503(1-2), 57 (2001)
Andreaus B, McEvoy AJ, Scherer GG, Electrochim. Acta, 47(13-14), 2223 (2002)
Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531 (2001)
Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587 (1996)
Wagner N, Schulze M, Electrochim. Acta, 48(25-26), 3899 (2003)
Schiller CA, Richter F, Gulzow E, Wagner N, Phys. Chem. Phys., 3, 2113 (2001)
Yang DJ, Ma JX, Xu L, Wu MZ, Wang HJ, Electrochim. Acta, 51(19), 4039 (2006)
Montgomery DC, Design and analysis of experiments, 5th ed. John Wiley & Sons Ltd., New York (2001)
Barbie F, PEM fuel cells, Theory and practice, Elsevier Academic Press, USA (2005)
O’Hayre R, Cha SW, Colella W, Fuel cell fundamentals, John Wiley & Sons, New York (2006)
Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H, J. Electroanal. Chem., 517(1-2), 85 (2001)
Hawut W, Hunsom M, Pruksathorn K, Korean J. Chem. Eng., 23(4), 555 (2006)
Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzalez ER, Electrochim. Acta, 43(24), 3761 (1998)
Hunsom M, Dunyushkina L, Adler S, Korean J. Chem. Eng., 23(5), 720 (2006)
Jorgensen MJ, Primdahl S, Morgensen M, Electrochim. Acta, 44(24), 4195 (1999)
Lee HK, Mater. Chem. Phys., 77, 639 (2002)
Lai CM, Lin JC, Hsueh KL, Hwang CP, Tsay KC, Tsai L, Peng YM, Int. J. Hydrog. Energy, Article in Press
Du CY, Zhao TS, Xu C, J. Power Sources, 167(2), 265 (2007)
Du CY, Zhao TS, Yang WW, Electrochim. Acta, 52(16), 5266 (2007)
Wagner N, Schnurnberger W, Muller B, Lang M, Electrochim. Acta, 43(24), 3785 (1998)
Eikerling M, Kornyshev AA, J. Electroanal. Chem., 475(2), 107 (1999)
Romero-Castanon T, Arriaga LG, Cano-Castillo U, J. Power Sources, 118(1-2), 179 (2003)
Easton EB, Pickup PG, Electrochim. Acta, 50(12), 2469 (2005)
Freire TJP, Gonzalez ER, J. Electroanal. Chem., 503(1-2), 57 (2001)
Andreaus B, McEvoy AJ, Scherer GG, Electrochim. Acta, 47(13-14), 2223 (2002)
Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531 (2001)
Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587 (1996)
Wagner N, Schulze M, Electrochim. Acta, 48(25-26), 3899 (2003)
Schiller CA, Richter F, Gulzow E, Wagner N, Phys. Chem. Phys., 3, 2113 (2001)
Yang DJ, Ma JX, Xu L, Wu MZ, Wang HJ, Electrochim. Acta, 51(19), 4039 (2006)
Montgomery DC, Design and analysis of experiments, 5th ed. John Wiley & Sons Ltd., New York (2001)
Barbie F, PEM fuel cells, Theory and practice, Elsevier Academic Press, USA (2005)
O’Hayre R, Cha SW, Colella W, Fuel cell fundamentals, John Wiley & Sons, New York (2006)