Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 11, 2006
Accepted July 23, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration
National Research Laboratory for Environmental Remediation, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea 1Department of Environmental Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701, Korea 2Department of Chemical & Biochemical Engineering, Chosun University, Gwangju 501-759, Korea
Korean Journal of Chemical Engineering, March 2008, 25(2), 253-258(6), 10.1007/s11814-008-0045-y
Download PDF
Abstract
Divalent ions were removed by ultrafiltration of anionic surfactant solution and the removal characteristics in single and mixed systems were investigated. The removal efficiency was >95% when the ratio of sodium dodecyl sulfate (SDS) to metal ions (S/M ratio) was >10. In single metal systems, the removal efficiency of each metal ion was almost the same. In the mixture, however, there was slight difference (ca. 1-2%) of removal efficiency and the order was Cd2+>Cu2+>Co2+.Zn2+. As S/M ratio increased, the difference in removal efficiency diminished. To explain the difference of removal efficiency in a mixture, complexation of divalent metal ion with counterion was considered. The distribution of complexed form of each metal ion was calculated, but it did not coincide with the experimental results. Further research will be necessary for a clear explanation.
References
Tchobanoglous G, Burton FL, Wastewater engineering: treatment, disposal, and reuse, 3 ed., Metcalf & Eddy Inc., New York (1991)
Scamehorn JF, Christian SD, Elsayed DA, Uchiyama H, Younis SS, Sep. Sci. Technol., 29(7), 809 (1994)
Park SJ, Yoon HH, Song SK, Korean J. Chem. Eng., 14(4), 233 (1997)
Baek K, Lee HH, Cho HJ, Yang JW, Korean J. Chem. Eng., 20(4), 698 (2003)
Baek K, Kim BK, Cho HJ, Yang JW, J. Hazard. Mater., 99(3), 303 (2003)
Baek K, Kim BK, Yang JW, Fresenius Environmental Bulletin, 13, 105 (2004)
Baek K, Kim BK, Yang JW, Desalination, 156(1-3), 137 (2003)
Baek K, Lee HH, Yang JW, Desalination, 158(1-3), 157 (2003)
Baek K, Yang JW, J. Hazard. Mater., 108(1-2), 119 (2004)
Baek K, Yang JW, Desalination, 167(1-3), 101 (2004)
Baek K, Yang HW, Desalination, 167(1-3), 111 (2004)
Baek K, Yang JW, Chemosphere, 57, 1091 (2004)
Hong JJ, Yang SM, Lee CH, Choi YK, Kajiuchi T, J. Colloid Interface Sci., 202(1), 63 (1998)
Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257 (2003)
Tangvijitsri S, Saiwan C, Soponvuttikul C, Scamehorn JF, Sep. Sci. Technol., 37(5), 993 (2002)
Yang HS, Han KH, Kang DW, Kim YH, Korean J. Chem. Eng., 13(5), 448 (1996)
Yang HS, Han KH, Kang DW, Song MJ, Kim YH, HWAHAK KONGHAK, 34(4), 482 (1996)
Zhou P, Yan H, Gu BH, Chemosphere, 58, 1327 (2005)
Baek K, Yang JS, Kwon TS, Yang JW, Desalination, 206(1-3), 245 (2007)
Baek K, Yang JW, Sep. Sci. Technol., 40(1-3), 699 (2005)
Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW, Chemosphere, 66, 970 (2007)
Kim HJ, Baek K, Kim BK, Yang JW, J. Hazard. Mater., 122(1-2), 31 (2005)
Lee J, Yang JS, Kim HJ, Baek K, Yang JW, Desalination, 184(1-3), 395 (2005)
Yang JS, Baek K, Yang JW, Desalination, 184(1-3), 385 (2005)
Scamehorn JF, Harwell JH, Surfactant-based separation processes, Marcel Dekker Inc., New York (1989)
Paulenova A, Rajec P, Jezikova M, Kucera J, J. Radioanal. Nucl. Chem., 208, 145 (1996)
Sadaoui Z, Azoug C, Charbit G, Charbit F, J. Environ. Eng.-ASCE, 124, 695 (1998)
Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht (1996)
Dunn RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257 (1985)
Shackelford JF, Introduction to materials science for engineers, 4ed., Prentice hall international, Inc., New Jersey (1992)
Stumm W, Aquatic chemical kinetics: Reaction rates of process in natural waters, John Wiley & Sons, New Work (1990)
Scamehorn JF, Christian SD, Elsayed DA, Uchiyama H, Younis SS, Sep. Sci. Technol., 29(7), 809 (1994)
Park SJ, Yoon HH, Song SK, Korean J. Chem. Eng., 14(4), 233 (1997)
Baek K, Lee HH, Cho HJ, Yang JW, Korean J. Chem. Eng., 20(4), 698 (2003)
Baek K, Kim BK, Cho HJ, Yang JW, J. Hazard. Mater., 99(3), 303 (2003)
Baek K, Kim BK, Yang JW, Fresenius Environmental Bulletin, 13, 105 (2004)
Baek K, Kim BK, Yang JW, Desalination, 156(1-3), 137 (2003)
Baek K, Lee HH, Yang JW, Desalination, 158(1-3), 157 (2003)
Baek K, Yang JW, J. Hazard. Mater., 108(1-2), 119 (2004)
Baek K, Yang JW, Desalination, 167(1-3), 101 (2004)
Baek K, Yang HW, Desalination, 167(1-3), 111 (2004)
Baek K, Yang JW, Chemosphere, 57, 1091 (2004)
Hong JJ, Yang SM, Lee CH, Choi YK, Kajiuchi T, J. Colloid Interface Sci., 202(1), 63 (1998)
Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257 (2003)
Tangvijitsri S, Saiwan C, Soponvuttikul C, Scamehorn JF, Sep. Sci. Technol., 37(5), 993 (2002)
Yang HS, Han KH, Kang DW, Kim YH, Korean J. Chem. Eng., 13(5), 448 (1996)
Yang HS, Han KH, Kang DW, Song MJ, Kim YH, HWAHAK KONGHAK, 34(4), 482 (1996)
Zhou P, Yan H, Gu BH, Chemosphere, 58, 1327 (2005)
Baek K, Yang JS, Kwon TS, Yang JW, Desalination, 206(1-3), 245 (2007)
Baek K, Yang JW, Sep. Sci. Technol., 40(1-3), 699 (2005)
Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW, Chemosphere, 66, 970 (2007)
Kim HJ, Baek K, Kim BK, Yang JW, J. Hazard. Mater., 122(1-2), 31 (2005)
Lee J, Yang JS, Kim HJ, Baek K, Yang JW, Desalination, 184(1-3), 395 (2005)
Yang JS, Baek K, Yang JW, Desalination, 184(1-3), 385 (2005)
Scamehorn JF, Harwell JH, Surfactant-based separation processes, Marcel Dekker Inc., New York (1989)
Paulenova A, Rajec P, Jezikova M, Kucera J, J. Radioanal. Nucl. Chem., 208, 145 (1996)
Sadaoui Z, Azoug C, Charbit G, Charbit F, J. Environ. Eng.-ASCE, 124, 695 (1998)
Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht (1996)
Dunn RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257 (1985)
Shackelford JF, Introduction to materials science for engineers, 4ed., Prentice hall international, Inc., New Jersey (1992)
Stumm W, Aquatic chemical kinetics: Reaction rates of process in natural waters, John Wiley & Sons, New Work (1990)