Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 29, 2008
Accepted February 21, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Highly ordered anodic alumina nanotemplate with about 14 nm diameter
Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea
shjeong@knu.ac.kr
Korean Journal of Chemical Engineering, May 2008, 25(3), 609-611(3), 10.1007/s11814-008-0102-6
Download PDF
Abstract
A novel method for the fabrication of highly ordered nanopore arrays with very small diameter of 14 nm was demonstrated by using low-temperature anodization. Two-step anodization was carried out at 25 V, sulfuric acid concentration of 0.3M, and electrolyte temperature of .15 oC. After anodization, a regular pore array with mean diameter of 14 nm and interpore distance of 65 nm was formed. The pore diameter and regular arrangement were confirmed by scanning electron microscopy (SEM) and fast Fourier transformation (FFT), respectively. The present results strongly suggest that the diameter of pores in a highly ordered alumina template can be reduced by lowering the anodization temperature.
References
McCord MA, J. Vac. Sci. Technol. B, 15(6), 2125 (1997)
Canning J, J. Vac. Sci. Technol. B, 15(6), 2109 (1997)
Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467 (2002)
Notzel R, Temmyo J, Tamamura T, Nature, 369(6476), 131 (1994)
Zach MP, Ng K, Penner RM, Science, 290, 2120 (2000)
Kyotani T, Xu WH, Yokoyama Y, Inahara J, Touhara H, Tomita A, J. Membr. Sci., 196(2), 231 (2002)
Li F, He JB, Zhou WLL, Wiley JB, J. Am. Chem. Soc., 125(52), 16166 (2003)
Jeong SH, Cha YK, Yoo IK, Song YS, Chung CW, Chem. Mater., 16, 1612 (2004)
Masuda H, Ohya M, Asoh H, Nakao M, Nohtomi M, Tamamura T, Jpn. J. Appl. Phys., 38, L1403 (1999)
Nielssh K, Choi J, Schwirn K, Wehrspohn RB, Gosele U, Nano Lett., 2, 677 (2002)
Xu T, Zangari G, Metzger RM, Nano Lett., 2, 37 (2002)
Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T, Jpn. J. Appl. Phys., 36, 7791 (1997)
Parkhutik VP, Shershulsky VI, J. Phys. D-Appl. Phys., 25, 1258 (1992)
Jessensky O, Muller F, Gosele U, Appl. Phys. Lett., 72, 1173 (1998)
Zhang L, Cho HS, Li F, Metzger RM, Doyle WD, J. Mater. Sci. Lett., 17(4), 291 (1998)
Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T, Appl. Phys. Lett., 71, 2770 (1997)
Canning J, J. Vac. Sci. Technol. B, 15(6), 2109 (1997)
Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467 (2002)
Notzel R, Temmyo J, Tamamura T, Nature, 369(6476), 131 (1994)
Zach MP, Ng K, Penner RM, Science, 290, 2120 (2000)
Kyotani T, Xu WH, Yokoyama Y, Inahara J, Touhara H, Tomita A, J. Membr. Sci., 196(2), 231 (2002)
Li F, He JB, Zhou WLL, Wiley JB, J. Am. Chem. Soc., 125(52), 16166 (2003)
Jeong SH, Cha YK, Yoo IK, Song YS, Chung CW, Chem. Mater., 16, 1612 (2004)
Masuda H, Ohya M, Asoh H, Nakao M, Nohtomi M, Tamamura T, Jpn. J. Appl. Phys., 38, L1403 (1999)
Nielssh K, Choi J, Schwirn K, Wehrspohn RB, Gosele U, Nano Lett., 2, 677 (2002)
Xu T, Zangari G, Metzger RM, Nano Lett., 2, 37 (2002)
Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T, Jpn. J. Appl. Phys., 36, 7791 (1997)
Parkhutik VP, Shershulsky VI, J. Phys. D-Appl. Phys., 25, 1258 (1992)
Jessensky O, Muller F, Gosele U, Appl. Phys. Lett., 72, 1173 (1998)
Zhang L, Cho HS, Li F, Metzger RM, Doyle WD, J. Mater. Sci. Lett., 17(4), 291 (1998)
Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T, Appl. Phys. Lett., 71, 2770 (1997)