ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 4, 2007
Accepted October 2, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Catalytic effects of potassium on lignin steam gasification with γ-Al2O3 as a bed material

Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phyathai Road, Patumwan, Bangkok 10330, Thailand 1Collaborative Research Center for Energy Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
prapan.k@chula.ac.th
Korean Journal of Chemical Engineering, July 2008, 25(4), 656-662(7), 10.1007/s11814-008-0108-0
downloadDownload PDF

Abstract

The effects of potassium on the reactivity of biomass-char steam gasification with the presence of a porous material were investigated by using a thermogravimetric reactor with high-heating rates. Lignin was employed as a char-rich biomass model compound. The potassium carbonate (K2CO3) was added to lignin and a mixture of lignin and γ-Al2O3 porous particles by means of aqueous impregnation. The effects of K2CO3 and γ-Al2O3 addition on pyrolysis of lignin and steam gasification of lignin-derived char were evaluated in terms of lignin conversion and the gaseous products. Results showed that K2CO3 slightly increased the steam gasification rate of lignin-derived char, but it did not influence the conversion in both the pyrolysis and steam gasification steps. In addition, tar was reduced by adding K2CO3 because of the increment of carbon conversion to gas product. The presence of γ-Al2O3 was found to induce the lower reactivity of resulting char after pyrolysis, reducing the gasification rate and conversion. A significant improvement in gasification conversion was observed with the presence of both K2CO3 and γ-Al2O3. Especially, almost complete gasification was achieved at a reaction temperature of 1,073 K.

References

McKendry P, Bioresour. Technol., 83(1), 37 (2002)
Klass DL, Biomass for renewable energy, fuels, and chemicals, Academic Press (1998)
Natarajan E, Nordin A, Rao AN, Biomass Bioenerg., 14(5-6), 533 (1998)
Henrich E, Burkle S, Meza-Renken ZI, Rumpel S, J. Anal. Appl. Pyrolysis, 49, 221 (1999)
Sun H, Song BH, Jang YW, Kim SD, Li H, Chang J, Korean J. Chem. Eng., 24(2), 341 (2007)
Asadullah M, Miyazawa T, Ito S, Kunimori K, Tomishige K, Energy Fuels, 17(4), 842 (2003)
Rapagna S, Jand N, Kiennemann A, Foscolo PU, Biomass Bioenerg., 19(3), 187 (2000)
Corella J, Orio A, Toledo JM, Energy Fuels, 13(3), 702 (1999)
Sutton D, Kelleher B, Ross JRH, Fuel Process. Technol., 73(3), 155 (2001)
Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195 (2005)
Chen X, Honda K, Zhang ZG, Appl. Catal. A: Gen., 279(1-2), 263 (2005)
Hosokai S, Kobayashi Y, Sonoyama N, Shimada T, Kuramoto K, J.-i. Hayashi and T. Chiba, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan (2004)
Shimizu T, Konaka Y, Koseki K, Teramae T, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan (2004)
Suzuki Y, Hatano H, Minowa T, Teramae T, Namioka T, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan (2004)
McKee DW, Fuel, 62, 170 (1983)
Huhn F, Klein J, Juntgen H, Fuel, 62, 196 (1983)
Mims CA, Pabst JK, Fuel, 62, 176 (1983)
Saber JM, Falconer JL, Brown LF, Fuel, 65, 1356 (1986)
Schumacher W, Muhlen HJ, Van Hek KH, Juntgen H, Fuel, 65, 1360 (1986)
Bruno G, Carvani L, Passoni G, Fuel, 65, 1473 (1986)
Veraa MJ, Bell AT, Fuel, 57, 194 (1978)
Douchanov D, Angelova G, Fuel, 612, 231 (1983)
Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640 (2001)
Walker PL, Matsumoto S, Hanzawa T, Muira T, Ismail IMK, Fuel, 62, 140 (1983)
Lang RJ, Neavel RC, Fuel, 61, 620 (1982)
Guo C, Zhang L, Fuel, 65, 1364 (1986)
Chen SG, Yang RT, Energy Fuels, 11(2), 421 (1997)
Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A, Ind. Eng. Chem. Res., 42(17), 3922 (2003)
Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A, Ind. Eng. Chem. Res., 42(17), 3929 (2003)
Elliott DC, Baker E, Biomass, 9, 195 (1986)
Miura K, Nakagawa H, Nakai SI, Kajitani S, Chem. Eng. Sci., 59(22-23), 5261 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로