ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 30, 2007
Accepted February 29, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics

Graduate School of Energy and Environment, Seoul National University of Technology, 172 Gongneung-2 dong, Nowon-gu, Seoul 139-743, Korea
daewon@snut.ac.kr
Korean Journal of Chemical Engineering, September 2008, 25(5), 1047-1053(7), 10.1007/s11814-008-0171-6
downloadDownload PDF

Abstract

The pyrolysis of pure biomass, high density polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET), plastic mixtures [HDPE+PP+PET (1 : 1 : 1)], and biomass/plastic mixture (9 : 1, 3 : 1, 1 : 1, 1 : 3 and 1 : 9) were investigated by using a thermogravimetric analyzer under a heating rate at 10 oC/min from room temperature to 800 ℃. Paper was selected as the biomass sample. Results obtained from this comprehensive investigation indicated that biomass was decomposed mainly in the temperature range of 290-420 ℃, whereas thermal degradation temperature of plastic mixture is 390-550 ℃. The percentage weight loss difference (W) between experimental and theoretical ones was calculated, which reached a significantly high value of (-)15 to (-)50% at around 450 ℃ in various blend materials. These thermogravimetric results indicate the presence of significant interaction and synergistic effect between biomass and plastic mixtures during their co-pyrolysis at the high temperature region. With increase in the amount of plastic mixture in blend material, the char production has diminished at final pyrolysis temperature range. Additionally, a kinetic analysis was performed to fit with TGA data, the entire pyrolysis processes being considered as one or two consecutive first order reactions.

References

Sharypov VL, Beregovtsova NG, Kuznetsov BN, Membrado L, Cebolla VL, Marin N, Weber JV, J. Anal. Appl. Pyrolysis, 67, 325 (2003)
Matsuzawa Y, Ayabe M, Nishino J, Polym. Degrad. Stabil., 71, 435 (2001)
Vivero L, Barriocanal C, Alvarez R, Diez MA, J. Anal. Appl. Pyrolysis, 74, 327 (2005)
Zhou LM, Wang YP, Huang QW, Cai JQ, Fuel Process. Technol., 87(11), 963 (2006)
Marin N, Collura S, Sharypov VL, Beregovtsova NG, Baryshnikov SV, Kutnetzov BN, Cebolla V, Weber JV, J. Anal. Appl. Pyrolysis, 65, 41 (2002)
Shafizadeh F, Adv. Carbohydr. Chem., 23, 419 (1968)
Broido A, Weenstein M, In Proceedings of the 3rd International Conference on Thermal Analysis. Basel: Birkhauser Verlag, 285 (1971)
Higgins H, J. Polym. Sci., 28, 645 (1958)
Bradbury AGW, Sakai Y, Shafizadeh F, J. Appl. Polym. Sci., 23, 3271 (1979)
Kilzer FJ, Broido A, Pyrodynamics, 2, 151 (1965)
Antal Jr MJ, Advances in solar energy. New York: Solar Energy Society, pp. 61-111 (1983)
Ponder GR, Richards GN, Stevenson TT, J. Anal. Appl. Pyrolysis, 22, 217 (1992)
Kandola BK, Horrocks AR, Price D, Coleman GV, J. Rev. Macromol. Chem. Phys., C36(4), 721 (1996)
S. L. Mardosky, editor. Thermal degradation of organic polymer, Interscience Publishers (1964)
Murata M, Makino T, Bull. Chem. Soc. Jpn., 12, 2414 (1973)
Murata M, Makino T, Bull. Chem. Soc. Jpn., 1, 192 (1975)
Dzieciol M, Trzeszczynski J, J. Appl. Polym. Sci., 77(9), 1894 (2000)
Saha B, Ghoshal AK, Chem. Eng. J., 111(1), 39 (2005)
Saha B, Maiti AK, Ghoshal AK, Thermochim. Acta, 444(1), 46 (2006)
Murata M, Makino T, Bull. Chem. Soc. Jpn., 7, 1241 (1975)
Stromberg RR, Straus S, Achhammer BG, J. Polym. Sci., 35, 355 (1959)
Knuemann R, Bockhorn H, Combust. Sci. Technol., 101, 285 (1994)
Wu CH, Chang CY, Hor JL, Shin SM, Chang FW, Canadian J. Chem. Eng., 72, 644 (1994)
Ballistreri A, Foti S, Maravigna P, Montaudo G, Scamporrino E, Polymer, 22, 131 (1981)
Koufopanos CA, Maschio G, Lucchesi A, Canadian J. Chem. Eng., 67, 75 (1989)
Hatakeyama T, Quinn FX, Thermal analysis - fundamentals and applications to polymer science, Wiley, Chichester (1999)
Nassar MM, Energy Sources, 21(1-2), 131 (1999)
Mansaray KG, Ghaly AE, Energy Sources, 21(10), 899 (1999)
Caballero JA, Marcilla A, Conesa JA, J. Anal. Appl. Pyrolysis, 44, 75 (1997)
Helsen L, vanden Buick E, J. Anal. Appl. Pyrolysis, 56, 51 (2000)
Kastanaki E, Vamvuka D, Grammelis P, Kakaras E, Fuel Process. Technol., 77-78, 159 (2002)
Sharypov VL, Marin N, Beregovtsova NG, Baryshnikov SV, Kuznetzov BN, Cebolla VL, Weber JV, J. Anal. Appl. Pyrolysis, 64, 15 (2002)
Jakab, E, Varhegyi G, Faix O, J. Anal. Appl. Pyrolysis, 56, 273 (2000)
Kilzer FJ, Broido A, Pyrodynamic, 2, 151 (1965)
Martin-Gullon I, Esperanza M, Font R, J. Anal. Appl. Pyrolysis, 58-59, 635 (2001)
Horvat N, Ng FTT, Fuel, 78(4), 459 (1999)
Bockhorn H, Hornung A, Hornung U, Schawaller D, J. Anal. Appl. Pyrolysis, 78, 93 (1999)
Coats AW, Redfern JF, Nature, 68, 201 (1964)
Mustafa VK, Esber O, Ozgen K, Cahit H, J. Anal. Appl. Pyrolysis, 45, 103 (1998)
Solomon PR, Serio MA, Carangelo RM, Markham JR, Fuel, 65, 82 (1986)
Ying GP, Enrique V, Luis P, Fuel, 75, 412 (1996)
Lazaro MJ, Moliner R, Suelves I, J. Anal. Appl. Pyrolysis, 47, 111 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로