ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 10, 2007
Accepted February 27, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris

1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R., China 2Department of Biotechnology, Jiangxi Agricultural University, 10 Yingshang Road, Nanchang 330045, P.R., China
guo_mj@ecust.edu.cn
Korean Journal of Chemical Engineering, September 2008, 25(5), 1065-1069(5), 10.1007/s11814-008-0174-3
downloadDownload PDF

Abstract

Based on the fact that Pichia cell growth follows a Monod equation under the condition of methanol concentration limitation, a kinetics model of recombinant methylotrophic yeast Pichia pastoris expressing porcine insulin precursor (PIP) was developed in the quasi-steady state in the induction phase. The model revealed that the relationship between specific growth rate (μ) and substrate methanol concentration was in accord with the Monod equation. The fermentation kinetic parameters maximum specific growth rate (μmax), saturation constant (Ks) and maintenance coefficient (M) were estimated to be 0.101 h.1, 0.252 g l.1, and 0.011 g MeOH g.1 DCW h.1, respectively. The unstructured model was validated in methanol induction phase with different initial cell densities. Results showed that the maximum specific protein production rate (qp.max) of 0.098 mg g.1 DCW h.1 was achieved when μ was kept at 0.016 h.1, and the maximum yield of PIP reached 0.97 g l.1, which was 1.5-fold as that of the control. Therefore, the simple Monod model proposed has proven to be a robust control system for recombinant porcine insulin precursor production by P. pastoris on pilot scale, which would be further applied on production scale.

References

Frank BH, Pettee JM, Zimmermann RE, Burck PJ, in Proceedings of the seventh American peptide symposium, D. H. Rich and E. Gross, Eds., Pierce Chemical Co., Rockford, IL (1981)
Shin CS, Hong MS, Bae CS, Lee J, Biotechnol. Prog., 13(3), 249 (1997)
Markussen J, Damgaard U, Diers I, Fiil N, Hansen MT, Lassen P, Norris F, Norris K, Schou O, Snel L, Thim L, Voigt HO, Diabetologia, 29, 568A (1986)
Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fill NP, Proc. Natl. Acad. Sci. USA, 83, 6766 (1986)
Wang Y, Liang ZH, Zhang YS, Yao SY, Xu YG, Tang YH, Zhu SQ, Cui DF, Feng YM, Biotechnol. Bioeng., 73(1), 74 (2001)
Cha HJ, Kim KR, Hwang BH, Ahn DH, Yoo YJ, Korean J. Chem. Eng., 24(5), 812 (2007)
Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast, 22, 249 (2005)
Cos O, Ramon R, Montesinos JL, Vallero F, Biotechnol. Bioeng., 95(1), 145 (2006)
Stratton J, Chiruvolu V, Meagher M, in Pichia protocols, D. R. Higgins and J. M. Cregg, Eds., Human Press, Totowa, New Jersey (1998)
Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA, Gene, 190, 55 (1997)
Mattanovich D, Gasser B, Hohenblum H, Sauer M, J. Biotechnol., 113, 121 (2004)
Zhang WH, Bevins MA, Plantz BA, Smith LA, Meagher MM, Biotechnol. Bioeng., 70(1), 1 (2000)
Li ZJ, Zhao QH, Liang H, Jiang SL, Chen T, Grella D, Shearon C, Bottaro DP, Sim BKL, Biotechnol. Lett., 24(19), 1631 (2002)
Zhou XS, Zhang YX, Biotechnol. Lett., 24(17), 1449 (2002)
Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K, J. Biosci. Bioeng., 90(3), 280 (2000)
Curvers S, Brixius P, Klauser T, Thommes J, Weuster-Botz D, Takors R, Wandrey C, Biotechnol. Prog., 17(3), 495 (2001)
Ren HT, Yuan JQ, Bellgardt KH, J. Biotechnol., 106, 53 (2003)
Curvers S, Linneman J, Klauser T, Wandrey C, Takors R, Chemie Ingenieur Technik, 73, 1615 (2001)
Guo M, Chu J, Zhang S, Acta Microbiol. Sinica., 41, 617 (2001)
Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F, J. Biotechnol., 116, 321 (2005)
Kang HA, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK, Appl. Microbiol. Biotechnol., 53(5), 575 (2000)
Pais JM, Varas L, Valdes J, Cabello C, Rodriguez L, Mansur M, Biotechnol. Lett., 25(3), 251 (2003)
d'Anjou MC, Daugulis AJ, Biotechnol. Bioeng., 72(1), 1 (2001)
Mergler M, Klinner U, Acta Biol. Hung., 52, 265 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로