ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 3, 2007
Accepted February 27, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Xylitol fermentation by Candida subtropicalis WF79 immobilized in polyacrylic hydrogel films

Department of Chemical Engineering, National Yunlin University of Science and Technology, 123, Section 3, University Road, Touliu, Yunlin 640, Taiwan, R.O.C. 1Jin Wen Institute of Technology, 99, An-Chung Road, Shin-Tien, Taipei County, 231, Taiwan, R.O.C. 2Department of Applied Chemistry, Chaoyang University of Technology, 168, Gifeng E. Rd., Wufeng, Taichung County, 413, Taiwan, R.O.C.
Korean Journal of Chemical Engineering, September 2008, 25(5), 1088-1093(6), 10.1007/s11814-008-0178-z
downloadDownload PDF

Abstract

Polyacrylate hydrogel films were used as immobilization matrices for cell entrapment of the yeast strain, Candida subtropicalis WF79, isolated from sugarcane bagasse. The hydrogel films with immobilized viable yeast cells were employed for the bioconversion from xylose to xylitol. The hydrogel was prepared from the monomers of 2-hydroxyethyl methacrylate (HEMA), methacrylic acid (MAA), and N,N-dimethyl acrylamide (DMA) with polyethylene glycol diacrylate (PEG-DA, weight-average molecular weight Mw=400 and 1,000 g/mol) as the crosslinking agent. The mechanical properties and fermentation yields of the immobilized polyacrylate hydrogel film with different monomeric formulation were investigated. Fermentation was carried out in a medium of 100 mL aqueous solution containing various amount of xylose. The conversion rate of xylose to xylitol conversion reached a maximum value of 80% after 120 h. The bioconversion activity gradually declined, after 720 h, to 65% conversion at 1,080 h.

References

Pepper T, Olinger PM, Food Technol., 10, 98 (1988)
Makinen KK, in Progress in sweeteners 2nd ed., T. H. Greenby ed., Elsevier Applied Science, London (1992)
Makinen KK, Soderling E, J. Food Sci., 45, 367 (1980)
Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FML, Process Biochem., 40, 3600 (2005)
Kwon SG, Park SW, Oh DK, J. Biosci. Bioeng., 101(1), 13 (2006)
Rosa SMA, Felipe MGA, Silva SS, Vitolo M, Appl. Biochem. Biotechnol., 70-72, 127 (1998)
Aguiar Jr BW, Faria LFF, Couto MAPG, Araujo OQF, Pereira Jr N, Biochem. Eng. J., 12, 49 (2002)
Walther T, Hensirisak P, Agblevor FA, Bioresour. Technol., 76(3), 213 (2001)
Latif F, Rajoka MI, Bioresour. Technol., 77(1), 57 (2001)
Mussatto SI, Roberto IC, Process Biochem., 39, 1433 (2004)
Mussatto SI, Dragone G, Roberto IC, Process Biochem., 40, 3801 (2005)
Silva SS, Afschar AS, Bioprocess Eng., 11, 129 (1994)
Rocheford WE, Rehg T, Chau PC, Biotechnol. Lett., 8, 115 (1986)
Sanroman A, Chamy R, Nunez MJ, Lema JM, Enzyme Microb. Technol., 16(1), 72 (1994)
Silva SS, Santos JC, Carvalho W, Aracava KK, Vitolo M, Process Biochem., 38, 903 (2003)
Santos JC, Converti A, Carvalho W, Mussatto SI, Silva SS, Process Biochem., 40, 113 (2005)
Santos JC, Mussatto SI, Dragone G, Converti A, Silva SS, Biochem. Eng. J., 23, 1 (2005)
Palmqvist E, Hahn-Hagerdal B, Bioresour. Technol., 74, 25 (2000)
Carvalho W, Silvo SS, Santos JC, Converti A, Enzyme Microb. Technol., 32(5), 553 (2003)
Carvalho W, Silva SS, Converti A, Vitolo M, Biotechnol. Bioeng., 79(2), 165 (2002)
Carvalho W, Santos JC, Canilha L, Silva JBA, Felipe MGA, Mancilha IM, Silva SS, Process Biochem., 39, 2135 (2004)
Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti A, Biochem. Eng. J., 25, 25 (2005)
Tranoudis I, Efron N, Contact Lens and Anterior Eye, 27, 177 (2004)
Jalbert I, Stapleton F, Contact Lens and Anterior Eye, 28, 3 (2005)
Campbell I, Duffus JH, in Yeast - a practical approach, IRL Press, Oxford, Washington DC (1988)
Sand C, Rennie RP, Diagn. Micr. Infec. Dis., 33, 223 (1999)
Song KH, Lee KR, Korean J. Chem. Eng., 24(1), 116 (2007)
Park K, Lee S, Maken S, Koh W, Min B, Park J, Korean J. Chem. Eng., 23(4), 601 (2006)
Wu JC, Ho P, Poh TY, Chow Y, Talukder MMR, Choi WJ, Korean J. Chem. Eng., 24(4), 648 (2007)
Yahashi Y, Hatsu M, Horitsu H, Kawai K, Suzuki T, Takamizawa K, Biotechnol. Lett., 18(12), 1395 (1996)
Yahashi Y, Horitsu H, Kawai K, Suzuki T, Takamizawa K, J. Ferment. Bioeng., 81(2), 148 (1996)
Carvalho W, Silva SS, Vitolo M, Mancilha IM, Z. Naturforsch., 55C, 213 (2000)
Carvalho W, Silva SS, Vitolo M, Felipe MGA, Mancilha IM, Z. Naturforsch, 57C, 109 (2002)
Carvalho W, Silva SS, Converti A, Vitolo M, Felipe MGA, Roberto IC, Silva MB, Mancilha IM, Appl. Biochem. Biotechnol., 98-100, 489 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로