Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 12, 2007
Accepted February 7, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hydrodynamic characteristics of activated carbon in air- and water-fluidized beds
Research Institute of Chemical and Process Engineering, University of Pannonia, Veszpr´em 8200, Hungary
Korean Journal of Chemical Engineering, September 2008, 25(5), 1170-1177(8), 10.1007/s11814-008-0193-0
Download PDF
Abstract
The hydrodynamic characteristics of small hydrophobic activated carbon particles were determined in air flowing through both fixed and fluidized bed layers and water flowing through an inverse fluidized bed. Based on experimental data the Ergun-equation was corrected. A new relationship is proposed to predict the pressure drop in a fixed bed with gas flowing by using the minimum fluidizing velocity (umf) and particle terminal velocity (ut). Apparent density of oven-dried activated carbon increases with filling the internal pores by water. After the bed density reaches the density of water, the system switches from an inverse fluidized layer into the classical fluidized state. Finally, it has been demonstrated that the Reynolds number (Remf) at umf associated with the original Archimedes number (Ar) for gas-solid fluidized system and the modified Ar numbers characterizing the inverse fluidized beds lie on identical curves.
References
Kunii D, Levenspiel O, Fluidization engineering, Wiley, N.Y. (1969)
Anderson A, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327 (1955)
Cho YJ, Park HY, Kim SW, Kang Y, Kim SD, Ind. Eng. Chem. Res., 41(8), 2058 (2002)
Han HD, Lee W, Kim YK, Kwon JL, Choi HS, Kang Y, Kim SD, Korean J. Chem. Eng., 20(1), 163 (2003)
Fan LS, Gas-liquid-solid fluidization engineering, Butterworth, Boston, Stoneham, MA (1989)
Lakshmi ACV, Balamurugan M, Balamurugan M, Samuel TN, Velan M, Bioprocess Eng., 22, 461 (2000)
Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143 (1982)
Ulaganathan N, Ulaganathan K, Bioprocess Eng., 15, 159 (1995)
Bendict RJF, Kumaresan G, Velan M, Bioprocess Eng., 19, 137 (1998)
Garside J, Al-Dibouni M, Ind. Eng. Chem. Process Des. Dev., 16, 206 (1997)
Lee DH, Korean J. Chem. Eng., 18(3), 347 (2001)
Renganathan T, Krishnaiah K, Chem. Eng. Sci., 60(10), 2545 (2005)
Kato Y, Ushida K, Kago T, Morooka S, Powder Technol., 28, 173 (1981)
Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971 (1997)
Lee D, Macchi A, Grace JR, Epstein N, Chem. Eng. Sci., 56(21-22), 6031 (2001)
Nemeth J, Virag T, Acta Chimica Hungarica, 115, 273 (1984)
Lewis EW, Bowerman EW, Chem. Eng. Prog., 48, 63 (1952)
Nemeth J, Imre L, Design of drying by adsorption, (in Hungarian), in “Handbook of Drying,” Chapter 14, Muszaki KK., Budapest (1974)
Ormos Z, Hung. J. Ind. Chem., 1, 31 (1973)
Richardson JF, Zaki WN, Trans. Inst. Chem. Engrs., 32, 35 (1954)
Ergun S, Orning AA, Ind. Eng. Chem., 41, 1179 (1949)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Karamanev DG, Nikolov N, AIChE J., 38, 1916 (1992)
Richardson JF, Transient fluidization and particulate systems, in “Fluidization,” J. F. Davidson and D. Harrison, Eds., Academic Press N.Y., p. 39 (1971)
Blickle T, Nemeth J, Acta Chimica Hungarica, 67, 113 (1971)
Wilhelm RH, Kwauk M, Chem. Eng. Prog., 44, 201 (1948)
Gelperin NI, Ainstein VG, Kvasha VB, Basics of fluidization techniques, (in Russian), Chemistry, Moskow, p. 84 (1967). “Chemists’ Handbook,” Ed.: Nikolsky, B.P. (in Russian), Chemistry, Moskow (1966)
Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81(3-4), 853 (2003)
Todes OM, Todes OB, Vessels containing fluidized layers (in Russian), Chemistry, Leningrad (1981)
Leva M, Fluidization, McGraw-Hill Co., N.Y., p. 64 (1959)
Beranek J, Sokol D, Winterstein G, Wirbelschichttechnik (in German), Leipzig (1964)
Anderson A, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327 (1955)
Cho YJ, Park HY, Kim SW, Kang Y, Kim SD, Ind. Eng. Chem. Res., 41(8), 2058 (2002)
Han HD, Lee W, Kim YK, Kwon JL, Choi HS, Kang Y, Kim SD, Korean J. Chem. Eng., 20(1), 163 (2003)
Fan LS, Gas-liquid-solid fluidization engineering, Butterworth, Boston, Stoneham, MA (1989)
Lakshmi ACV, Balamurugan M, Balamurugan M, Samuel TN, Velan M, Bioprocess Eng., 22, 461 (2000)
Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143 (1982)
Ulaganathan N, Ulaganathan K, Bioprocess Eng., 15, 159 (1995)
Bendict RJF, Kumaresan G, Velan M, Bioprocess Eng., 19, 137 (1998)
Garside J, Al-Dibouni M, Ind. Eng. Chem. Process Des. Dev., 16, 206 (1997)
Lee DH, Korean J. Chem. Eng., 18(3), 347 (2001)
Renganathan T, Krishnaiah K, Chem. Eng. Sci., 60(10), 2545 (2005)
Kato Y, Ushida K, Kago T, Morooka S, Powder Technol., 28, 173 (1981)
Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971 (1997)
Lee D, Macchi A, Grace JR, Epstein N, Chem. Eng. Sci., 56(21-22), 6031 (2001)
Nemeth J, Virag T, Acta Chimica Hungarica, 115, 273 (1984)
Lewis EW, Bowerman EW, Chem. Eng. Prog., 48, 63 (1952)
Nemeth J, Imre L, Design of drying by adsorption, (in Hungarian), in “Handbook of Drying,” Chapter 14, Muszaki KK., Budapest (1974)
Ormos Z, Hung. J. Ind. Chem., 1, 31 (1973)
Richardson JF, Zaki WN, Trans. Inst. Chem. Engrs., 32, 35 (1954)
Ergun S, Orning AA, Ind. Eng. Chem., 41, 1179 (1949)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Karamanev DG, Nikolov N, AIChE J., 38, 1916 (1992)
Richardson JF, Transient fluidization and particulate systems, in “Fluidization,” J. F. Davidson and D. Harrison, Eds., Academic Press N.Y., p. 39 (1971)
Blickle T, Nemeth J, Acta Chimica Hungarica, 67, 113 (1971)
Wilhelm RH, Kwauk M, Chem. Eng. Prog., 44, 201 (1948)
Gelperin NI, Ainstein VG, Kvasha VB, Basics of fluidization techniques, (in Russian), Chemistry, Moskow, p. 84 (1967). “Chemists’ Handbook,” Ed.: Nikolsky, B.P. (in Russian), Chemistry, Moskow (1966)
Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81(3-4), 853 (2003)
Todes OM, Todes OB, Vessels containing fluidized layers (in Russian), Chemistry, Leningrad (1981)
Leva M, Fluidization, McGraw-Hill Co., N.Y., p. 64 (1959)
Beranek J, Sokol D, Winterstein G, Wirbelschichttechnik (in German), Leipzig (1964)