Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 11, 2007
Accepted February 14, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Epitaxial growth of GaN on (0001) Al2O3 via solution-cast seed layer formation process using Ga(mDTC)3
School of Display and Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea 1Department of Chemical Engineering, University of Ulsan, Ulsan 680-749, Korea
Korean Journal of Chemical Engineering, September 2008, 25(5), 1184-1189(6), 10.1007/s11814-008-0195-y
Download PDF
Abstract
This paper reports an alternative method for the growth of GaN epitaxial layer on (0001) Al2O3 substrate by hot-wall vapor phase epitaxy technique. Tris (N,N-dimethyldithiocarbamato)-gallium (III), Ga(mDTC)3 was introduced as a precursor material for the seed layer formation in the growth of GaN. Optimal growth conditions with seed layers formed by the Ga(mDTC)3 concentration of 0.047 mol/L were identified: Growth temperature was found to be 850 ℃, and optimal distance between the reactant outlet and substrate was determined to be 12.5 cm. Characterization results showed that this growth method produce high-crystallinity GaN epitaxial layers at a relatively lower growth temperature compared to the existing growth techniques and simplify the growth process.
Keywords
References
Nakamura S, Senoh M, Nagahama Si, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozak T, Umemoto H, Sano H, Chocho K, Appl. Phys. Lett., 72, 2014 (1998)
Morkoc H, Nitride semiconductors and devices, Springer, Heidelberg (1999)
Mohammad SN, Morkoc H, Prog. Quantum Electron, 20, 361 (1996)
Morkoc H, Di Carlo A, Cingolani R, in Condensed matter news, edited by Patrick Bernier (in press)
Maruska HP, Tietjen JJ, Appl. Phys. Lett., 15, 327 (1969)
Molnar RJ, Goetz W, Romano LT, Johnson NM, J. Cryst. Growth, 178, 147 (1997)
Manasevit HM, Erdmann FM, Simpson WI, J. Electrochem. Soc., 118, 1864 (1971)
Hashimoto M, Amano H, Sawaki N, Akasaki I, J. Cryst. Growth, 68, 163 (1984)
Yoshida S, Misawa S, Itoh A, Appl. Phys. Lett., 26, 461 (1975)
Porowsky S, Grezegory I, J. Cryst. Growth, 178, 174 (1997)
Kurai S, Naoi Y, Abe T, Ohmi S, Sakai S, Jpn. J. Appl. Phys., 35, L77 (1996)
Sato H, Takahashi H, Watanabe A, Ota H, Appl. Phys. Lett., 68, 3617 (1996)
Tsuchiya H, Tageuchi A, Kurihara M, Hasegawa F, J. Cryst. Growth, 152, 21 (1995)
Lee J, Paek H, Yoo J, Kim G, Kum D, Mat. Sci. Eng., B59, 12 (1999)
Tavernier PR, Clarke DR, J. Am. Ceram. Soc., 85(1), 49 (2002)
Oshimal Y, Eri T, Shibata M, Sunakawa H, Usui A, Phys. Status Solidi A-Appl. Res., 194, 554 (2002)
Able A, Wegscheider W, Engl K, Zweck J, J. Cryst. Growth, 276(3-4), 415 (2005)
Paskoval T, Paskov PP, Darakchieva V, Tungasmita S, Birch J, Monemar B, Phys. Status Solidi A-Appl. Res., 183, 197 (2011)
Martin D, Napierala J, Ilegems M, Butte M, Grandjean N, Appl. Phys. Lett., 88, 241914 (2006)
Kryliouk O, Reed M, Dann T, Anderson T, Chai B, Mater. Sci. Eng., B66, 26 (1999)
Jung WS, Ra CS, Min BK, Bull. Korean Chem. Soc., 26, 131 (2005)
Park C, Yeo S, Kim JH, Yoon D, Anderson TJ, Thin Solid Films, 498(1-2), 94 (2006)
Copel M, Copel MC, Kaxiras E, Tromp RM, Phys. Rev. Lett., 63, 632 (1989)
Morkoc H, Nitride semiconductors and devices, Springer, Heidelberg (1999)
Mohammad SN, Morkoc H, Prog. Quantum Electron, 20, 361 (1996)
Morkoc H, Di Carlo A, Cingolani R, in Condensed matter news, edited by Patrick Bernier (in press)
Maruska HP, Tietjen JJ, Appl. Phys. Lett., 15, 327 (1969)
Molnar RJ, Goetz W, Romano LT, Johnson NM, J. Cryst. Growth, 178, 147 (1997)
Manasevit HM, Erdmann FM, Simpson WI, J. Electrochem. Soc., 118, 1864 (1971)
Hashimoto M, Amano H, Sawaki N, Akasaki I, J. Cryst. Growth, 68, 163 (1984)
Yoshida S, Misawa S, Itoh A, Appl. Phys. Lett., 26, 461 (1975)
Porowsky S, Grezegory I, J. Cryst. Growth, 178, 174 (1997)
Kurai S, Naoi Y, Abe T, Ohmi S, Sakai S, Jpn. J. Appl. Phys., 35, L77 (1996)
Sato H, Takahashi H, Watanabe A, Ota H, Appl. Phys. Lett., 68, 3617 (1996)
Tsuchiya H, Tageuchi A, Kurihara M, Hasegawa F, J. Cryst. Growth, 152, 21 (1995)
Lee J, Paek H, Yoo J, Kim G, Kum D, Mat. Sci. Eng., B59, 12 (1999)
Tavernier PR, Clarke DR, J. Am. Ceram. Soc., 85(1), 49 (2002)
Oshimal Y, Eri T, Shibata M, Sunakawa H, Usui A, Phys. Status Solidi A-Appl. Res., 194, 554 (2002)
Able A, Wegscheider W, Engl K, Zweck J, J. Cryst. Growth, 276(3-4), 415 (2005)
Paskoval T, Paskov PP, Darakchieva V, Tungasmita S, Birch J, Monemar B, Phys. Status Solidi A-Appl. Res., 183, 197 (2011)
Martin D, Napierala J, Ilegems M, Butte M, Grandjean N, Appl. Phys. Lett., 88, 241914 (2006)
Kryliouk O, Reed M, Dann T, Anderson T, Chai B, Mater. Sci. Eng., B66, 26 (1999)
Jung WS, Ra CS, Min BK, Bull. Korean Chem. Soc., 26, 131 (2005)
Park C, Yeo S, Kim JH, Yoon D, Anderson TJ, Thin Solid Films, 498(1-2), 94 (2006)
Copel M, Copel MC, Kaxiras E, Tromp RM, Phys. Rev. Lett., 63, 632 (1989)