Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 1, 2007
Accepted April 1, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Application of a thermally coupled distillation column with separated main columns to gas concentration process
School of Chemical Engineering and Technology, Yeungnam University, 214-1 Dae-dong, Gyeongsan 712-749 Korea 1Department of Chemical Engineering, Dong-A University, 840 Hadan-dong, Saha-gu, Busan 604-714 Korea
Korean Journal of Chemical Engineering, November 2008, 25(6), 1245-1251(7), 10.1007/s11814-008-0206-z
Download PDF
Abstract
A modified fully thermally coupled distillation column (FTCDC) for operability improvement is utilized in a gas concentration process. The column consists of a prefractionator and two separated main columns having high distillation efficiency and flexible control structure. The operability of the proposed column is evaluated by examining the open-loop dynamic responses of step input variations with the HYSYS simulation. The simulation result indicates that the modified system can give better control than the original FTCDC. The energy saving and reduction of construction cost are discussed, and the ease of vapor flow manipulation and the elimination of a compressor in the vapor transfer are also evaluated as possible improvements.
Keywords
References
Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565 (1998)
Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485 (1999)
Agrawal R, AIChE J., 46(11), 2198 (2000)
Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34 (1995)
Kim YH, J. Chem. Eng. Jpn., 36(12), 1503 (2003)
Kim YH, J. Chem. Eng. Jpn., 39(3), 284 (2006)
Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
Lee JY, Kim YH, Hwang KS, Chem. Eng. Process., 43(4), 495 (2004)
Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., 70, Part A (1992)
Kim YH, Chem. Eng. J., 85(2-3), 289 (2002)
Widagdo S, Seider WD, AIChE J., 42(1), 96 (1996)
Seader JD, Henley EJ, Separation process principles, John Wiley & Sons, New York, p. 509 (1998)
Lee JY, Kim YH, Hwang KS, J. Control Auto. Syst. Eng., 8, 842 (2002)
Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485 (1999)
Agrawal R, AIChE J., 46(11), 2198 (2000)
Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34 (1995)
Kim YH, J. Chem. Eng. Jpn., 36(12), 1503 (2003)
Kim YH, J. Chem. Eng. Jpn., 39(3), 284 (2006)
Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
Lee JY, Kim YH, Hwang KS, Chem. Eng. Process., 43(4), 495 (2004)
Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., 70, Part A (1992)
Kim YH, Chem. Eng. J., 85(2-3), 289 (2002)
Widagdo S, Seider WD, AIChE J., 42(1), 96 (1996)
Seader JD, Henley EJ, Separation process principles, John Wiley & Sons, New York, p. 509 (1998)
Lee JY, Kim YH, Hwang KS, J. Control Auto. Syst. Eng., 8, 842 (2002)