Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 24, 2007
Accepted April 21, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
The use of dilute acetic acid for butyl acetate production in a reactive distillation: Simulation and control studies
Control and Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand 1Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering,Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand, Korea
Amornchai.A@chula.ac.th
Korean Journal of Chemical Engineering, November 2008, 25(6), 1252-1266(15), 10.1007/s11814-008-0207-y
Download PDF
Abstract
The recovery of dilute acetic acid, which is widely found as a by-product in many chemical and petrochemical industries, becomes an important issue due to economic and environmental awareness. In general, separation of acetic acid in aqueous solution by conventional distillation columns is difficult, requiring a column with many stages and high energy consumption. As a result, the primary concern of the present study is the application of reactive distillation as a potential alternative method to recover dilute acetic acid. The direct use of dilute acetic acid as reactant for esterification with butanol to produce butyl acetate in the reactive distillation is investigated. Simulation studies are performed in order to investigate effect of the concentration of dilute acetic acid and key process parameters on the performance of the reactive distillation in terms of acetic acid conversion and butyl acetate production. In addition, three alternative control strategies are studied for the closed loop control of the reactive distillation. The control objective_x000D_
is to maintain the butyl acetate in a bottom product stream at the desired purity of 99.5 wt%.
References
Saha B, Chopade SP, Mahajani SM, Catal. Today, 60(1-2), 147 (2000)
Xu ZP, Afacan A, Chuang DT, Can. J. Chem. Eng., 77(4), 676 (1999)
Ragaini V, Bianchi CL, Pirola C, Carvoli G, Appl. Catal. B: Environ., 64(1-2), 66 (2006)
Hung WJ, Lai IK, Chen YW, Hung SB, Huang HP, Lee MJ, Yu CC, Ind. Eng. Chem. Res., 45(5), 1722 (2006)
Cardona CA, Marulanda VF, Young D, Chem. Eng. Sci., 59(24), 5839 (2004)
Hanika J, Kolena J, Smejkal Q, Chem. Eng. Sci., 54(21), 5205 (1999)
Arpornwichanop A, Somrang Y, Wiwittanaporn C, WSEAS Transactions on Computers, 6, 80 (2007)
Sneesby MG, Tade MO, Datta R, Smith TN, Ind. Eng. Chem. Res., 36(5), 1855 (1997)
Subawalla H, Fair JR, Ind. Eng. Chem. Res., 38(10), 3696 (1999)
Luyben WL, Ind. Eng. Chem. Res., 39(8), 2935 (2000)
Assabumrungrat S, Wongwattanasate D, Pavarajarn V, Praserthdam P, Arpornwichanop A, Goto S, Korean J. Chem. Eng., 21(6), 1139 (2004)
Han M, Clough DE, Korean J. Chem. Eng., 23(4), 540 (2006)
Al-Arfaj M, Luyben WL, Ind. Eng. Chem. Res., 39(9), 3298 (2000)
Wang SJ, Wong DSH, Lee EK, Ind. Eng. Chem. Res., 42(21), 5182 (2003)
Singh A, Tiwari A, Mahajani SM, Gudi RD, Ind. Eng. Chem. Res., 45(6), 2017 (2006)
Sahapatsombud U, Arpornwichanop A, Assabumrungrat S, Praserthdam P, Goto S, Korean J. Chem. Eng., 22(3), 387 (2005)
Steinigeweg S, Gmehling J, Ind. Eng. Chem. Res., 41(22), 5483 (2002)
Liptak BG, Instrument engineers’ handbook: Process measurement and analysis, Fourth Edition, CRC Press, Fourth Edition (2003)
Tang YT, Huang HP, Chien IL, J. Chem. Eng. Jpn., 38(2), 130 (2005)
Xu ZP, Afacan A, Chuang DT, Can. J. Chem. Eng., 77(4), 676 (1999)
Ragaini V, Bianchi CL, Pirola C, Carvoli G, Appl. Catal. B: Environ., 64(1-2), 66 (2006)
Hung WJ, Lai IK, Chen YW, Hung SB, Huang HP, Lee MJ, Yu CC, Ind. Eng. Chem. Res., 45(5), 1722 (2006)
Cardona CA, Marulanda VF, Young D, Chem. Eng. Sci., 59(24), 5839 (2004)
Hanika J, Kolena J, Smejkal Q, Chem. Eng. Sci., 54(21), 5205 (1999)
Arpornwichanop A, Somrang Y, Wiwittanaporn C, WSEAS Transactions on Computers, 6, 80 (2007)
Sneesby MG, Tade MO, Datta R, Smith TN, Ind. Eng. Chem. Res., 36(5), 1855 (1997)
Subawalla H, Fair JR, Ind. Eng. Chem. Res., 38(10), 3696 (1999)
Luyben WL, Ind. Eng. Chem. Res., 39(8), 2935 (2000)
Assabumrungrat S, Wongwattanasate D, Pavarajarn V, Praserthdam P, Arpornwichanop A, Goto S, Korean J. Chem. Eng., 21(6), 1139 (2004)
Han M, Clough DE, Korean J. Chem. Eng., 23(4), 540 (2006)
Al-Arfaj M, Luyben WL, Ind. Eng. Chem. Res., 39(9), 3298 (2000)
Wang SJ, Wong DSH, Lee EK, Ind. Eng. Chem. Res., 42(21), 5182 (2003)
Singh A, Tiwari A, Mahajani SM, Gudi RD, Ind. Eng. Chem. Res., 45(6), 2017 (2006)
Sahapatsombud U, Arpornwichanop A, Assabumrungrat S, Praserthdam P, Goto S, Korean J. Chem. Eng., 22(3), 387 (2005)
Steinigeweg S, Gmehling J, Ind. Eng. Chem. Res., 41(22), 5483 (2002)
Liptak BG, Instrument engineers’ handbook: Process measurement and analysis, Fourth Edition, CRC Press, Fourth Edition (2003)
Tang YT, Huang HP, Chien IL, J. Chem. Eng. Jpn., 38(2), 130 (2005)