Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 7, 2008
Accepted April 27, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of reduction temperature on the preparation of zero-valent iron aerogels for trichloroethylene dechlorination
Faculty of Environmental Engineering, University of Seoul, Seoul 130-743, Korea 1Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Korean Journal of Chemical Engineering, November 2008, 25(6), 1377-1384(8), 10.1007/s11814-008-0226-8
Download PDF
Abstract
Zero-valent iron (ZVI) aerogels have been synthesized by sol-gel method and supercritical CO2 drying, followed by H2 reduction in the temperature range of 350-500 ℃. When applied to trichloroethylene (TCE) dechlorination, the ZVI aerogel reduced at 370 ℃ showed the highest performance in the conditions employed in this study. Thus, the effect of reduction temperature in preparing ZVI aerogels has been investigated by several characterizations such as BET, XRD, TPR, and TEM analyses. As the reduction temperature decreased from 500 to 350 ℃, the BET surface area of the resulting aerogels increased from 6 to 30 m2/g, whereas their Fe^(0) content decreased up to 64%. It was also found that H2 reduction at low temperatures such as 350 and 370 ℃ leads to the formation of ZVI aerogel particles consisting of both Fe^(0) and FeOx in the particle cores with a different amount ratio, where FeOx is a mixture of maghemite and magnetite. It is, therefore, suggested that reduction at 370 ℃ for ZVI aerogel preparation yielded particles_x000D_
homogeneously composed of Fe^(0) and FeOx in the amount ratio of 87/13, resulting in high TCE dechlorination rate. On the other hand, when Pd- and Ni-ZVI aerogels were prepared via cogellation and then applied for TCE dechlorination, we also observed a similar effect of reduction temperature. However, the reduction at 350 or 370 ℃ produced Pd- or Ni-ZVI aerogel particles in which Fe^(0) and Fe3O4 co-exist homogeneously. Since both Fe^(0) and Fe3O4 are advantageous in TCE dechlorination, the activities of Pd- and Ni-ZVI aerogels reduced at 350 ℃ were comparable to those of both aerogels reduced at 370 ℃, although the former aerogels have less Fe^(0) content.
References
Kao CM, Chen SC, Liu JK, Chemosphere, 43, 1071 (2001)
Scherer MM, Richter S, Valentine RL, Alvarez PJJ, Critical Reviews in Environmental Science and Technology, 30, 363 (2000)
Meyer DE, Bhattacharyya D, J. Phys. Chem. B, 111(25), 7142 (2007)
Ponder SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564 (2000)
Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DK, Mallouk TE, Chem. Mater., 13, 479 (2001)
Schrick B, Blough JL, Jones AD, Mallouk TE, Chem. Mater., 14, 5140 (2002)
Wang CB, Zhang WX, Environ. Sci. Technol., 31, 2154 (1997)
Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD, Environ. Sci. Technol., 39, 1221 (2005)
Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC, Inorg. Chem., 34(1), 28 (1995)
Duxin N, Stephan O, Petit C, Bonville P, Colliex C, Pileni MP, Chem. Mater., 9, 2096 (1997)
Duxin N, Pileni MP, Wernsdorfer W, Barbara B, Benoit A, Mailly D, Langmuir, 16(1), 11 (2000)
Carpenter EE, Calvin S, Stroud RM, Harris VG, Chem. Mater., 15, 3245 (2003)
Uegami M, Kawano J, Okita T, Fujii Y, Okinaka K, Kakuya K, Yatagai S, US Patent 7,022,256 (2006)
Liu Y, Choi H, Dionysiou D, Lowry GV, Chem. Mater., 17, 5315 (2005)
Mackenzie PD, Horney DP, Sivavec TM, J. Hazard. Mater., 68, 1 (1999)
Liu CC, Tseng DH, Wang CY, J. Hazard. Mater., 136(3), 706 (2006)
Johnson TL, Fish W, Gorby YA, Tratnyek PG, J. Contam. Hydrol., 29, 379 (1998)
Williams AGB, Scherer MM, Environ. Sci. Technol., 38, 4782 (2004)
Zhang WX, Wang CB, Lien HL, Catal. Today, 40(4), 387 (1998)
Nyer EK, Vance DB, Ground Water Monit. Rem., 21, 41 (2001)
Gash AE, Tillotson TM, Satcher Jr. JH, Poco JF, Hrubesh LW, Simpson RL, Chem. Mater., 13, 999 (2001)
Wimmers OJ, Arnoldy P, Moulijn JA, J. Phys. Chem., 90, 1331 (1986)
Tiernan MJ, Barnes PA, Parkes GMB, J. Phys. Chem., 105, 220 (2001)
Carpenter EE, Long JW, Rolison DR, Logan MS, Pettigrew K, Stroud RM, Kuhn LT, Hansen BR, Morup S, J. Appl. Phys., 99, 08N711 (2006)
Scherer MM, Richter S, Valentine RL, Alvarez PJJ, Critical Reviews in Environmental Science and Technology, 30, 363 (2000)
Meyer DE, Bhattacharyya D, J. Phys. Chem. B, 111(25), 7142 (2007)
Ponder SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564 (2000)
Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DK, Mallouk TE, Chem. Mater., 13, 479 (2001)
Schrick B, Blough JL, Jones AD, Mallouk TE, Chem. Mater., 14, 5140 (2002)
Wang CB, Zhang WX, Environ. Sci. Technol., 31, 2154 (1997)
Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD, Environ. Sci. Technol., 39, 1221 (2005)
Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC, Inorg. Chem., 34(1), 28 (1995)
Duxin N, Stephan O, Petit C, Bonville P, Colliex C, Pileni MP, Chem. Mater., 9, 2096 (1997)
Duxin N, Pileni MP, Wernsdorfer W, Barbara B, Benoit A, Mailly D, Langmuir, 16(1), 11 (2000)
Carpenter EE, Calvin S, Stroud RM, Harris VG, Chem. Mater., 15, 3245 (2003)
Uegami M, Kawano J, Okita T, Fujii Y, Okinaka K, Kakuya K, Yatagai S, US Patent 7,022,256 (2006)
Liu Y, Choi H, Dionysiou D, Lowry GV, Chem. Mater., 17, 5315 (2005)
Mackenzie PD, Horney DP, Sivavec TM, J. Hazard. Mater., 68, 1 (1999)
Liu CC, Tseng DH, Wang CY, J. Hazard. Mater., 136(3), 706 (2006)
Johnson TL, Fish W, Gorby YA, Tratnyek PG, J. Contam. Hydrol., 29, 379 (1998)
Williams AGB, Scherer MM, Environ. Sci. Technol., 38, 4782 (2004)
Zhang WX, Wang CB, Lien HL, Catal. Today, 40(4), 387 (1998)
Nyer EK, Vance DB, Ground Water Monit. Rem., 21, 41 (2001)
Gash AE, Tillotson TM, Satcher Jr. JH, Poco JF, Hrubesh LW, Simpson RL, Chem. Mater., 13, 999 (2001)
Wimmers OJ, Arnoldy P, Moulijn JA, J. Phys. Chem., 90, 1331 (1986)
Tiernan MJ, Barnes PA, Parkes GMB, J. Phys. Chem., 105, 220 (2001)
Carpenter EE, Long JW, Rolison DR, Logan MS, Pettigrew K, Stroud RM, Kuhn LT, Hansen BR, Morup S, J. Appl. Phys., 99, 08N711 (2006)