Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 26, 2008
Accepted September 18, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhanced photocatalytic oxidation properties in Pt-TiO2 thin films by grounding
Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
Korean Journal of Chemical Engineering, March 2009, 26(2), 392-397(6), 10.1007/s11814-009-0066-1
Download PDF
Abstract
The rates of formaldehyde and toluene photocatalytic oxidation with different initial concentrations over a Pt-TiO2 film were analyzed at both the grounded and non-grounded states. The photocatalytic oxidation rates at the grounded states were faster than in the non-grounded states under similar reaction conditions. The enhanced photocatalytic oxidation rates in the grounded state were attributed to the effective splitting of the electron-hole pairs as a result of the scavenging of photoexcited electrons through the ITO (indium tin oxide) glass to earth. The pseudo first order model showed good agreement with the experimentally obtained heterogeneous photocatalytic oxidation rates of formaldehyde and toluene.
Keywords
References
Liu H, Lian Z, Ye X, Shangguan W, Chemosphere, 60, 630 (2005)
Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
Zhao J, Yang X, Build. Environ., 38, 645 (2003)
Ichiura H, Kitaoka T, Tanaka H, Chemosphere, 50, 79 (2003)
Torimoto T, Okawa Y, Takeda N, Yoneyama H, J. Photochem. Photobiol. A, 103, 153 (1997)
Jianjun Y, Dongxu L, Zhijun Z, Qinglin L, Hanqing W, J. Photochem. Photobiol. A, 137, 197 (2003)
Ao CH, Lee SC, Chem. Eng. Sci., 60(1), 103 (2005)
Debeila MA, Raphulu MC, Mokoena E, Avalos M, Petranovskii V, Coville NJ, Scurrell MS, Mater. Sci. Eng. A, 396, 70 (2005)
O’Regan B, Moser J, Anderson M, Gratzel M, J. Phys. Chem., 94, 8720 (1990)
Hagfeldt A, Bjorksten U, Lindquist SE, Sol. Energy Mat. Sol. Cells, 27, 293 (1992)
Hodes G, Howell IDJ, Peter LM, J. Electrochem. Soc., 139, 3136 (1992)
Sodergren S, Hagfeldt A, Olsson J, Lindquist SE, J. Phys. Chem., 98(21), 5552 (1994)
Fujishima A, Rao TN, Tryk DA, Electrochim. Acta, 45(28), 4683 (2000)
Abraham H, Jack GC, Int. J. Chem. Kinet., 10, 803 (1978)
Timothy NO, Robert TB, Environ. Sci. Technol., 29, 1223 (1995)
Shiraishi F, Yamaguchi S, Ohbuchi Y, Chem. Eng. Sci., 58(3-6), 929 (2003)
Stephanie P, Gerard L, Francoise M, J. Photochem. Photobiol. A, 157, 275 (2003)
Hathaway GJ, Proctor NH, Hughes JP, Fischman ML, Proctor and Hughes’ chemical hazards of the workplace, 3rd ed., Van Nostrand Reinhold, New York (1991)
Maroni M, Seifert B, Lindvall T, Editors, Indoor air quality-a comprehensive reference book, Elsevier, Amsterdam (1995)
Kang M, Kim BJ, Cho SM, Chung CH, Kim BW, Han GY, Yoon KJ, J. Mol. Catal. A-Chem., 180(1-2), 125 (2002)
Timothy NO, Environ. Sci. Technol., 30, 3578 (1996)
Nam W, Kim JM, Han GY, Chemosphere, 4, 1019 (2002)
Coronado JM, Zorn ME, Tejedor-Tejedor I, Anderson MA, Appl. Catal. B: Environ., 43(4), 329 (2003)
Goswami DY, J. Solar Energy Eng., 119, 101 (1997)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
Zhao J, Yang X, Build. Environ., 38, 645 (2003)
Ichiura H, Kitaoka T, Tanaka H, Chemosphere, 50, 79 (2003)
Torimoto T, Okawa Y, Takeda N, Yoneyama H, J. Photochem. Photobiol. A, 103, 153 (1997)
Jianjun Y, Dongxu L, Zhijun Z, Qinglin L, Hanqing W, J. Photochem. Photobiol. A, 137, 197 (2003)
Ao CH, Lee SC, Chem. Eng. Sci., 60(1), 103 (2005)
Debeila MA, Raphulu MC, Mokoena E, Avalos M, Petranovskii V, Coville NJ, Scurrell MS, Mater. Sci. Eng. A, 396, 70 (2005)
O’Regan B, Moser J, Anderson M, Gratzel M, J. Phys. Chem., 94, 8720 (1990)
Hagfeldt A, Bjorksten U, Lindquist SE, Sol. Energy Mat. Sol. Cells, 27, 293 (1992)
Hodes G, Howell IDJ, Peter LM, J. Electrochem. Soc., 139, 3136 (1992)
Sodergren S, Hagfeldt A, Olsson J, Lindquist SE, J. Phys. Chem., 98(21), 5552 (1994)
Fujishima A, Rao TN, Tryk DA, Electrochim. Acta, 45(28), 4683 (2000)
Abraham H, Jack GC, Int. J. Chem. Kinet., 10, 803 (1978)
Timothy NO, Robert TB, Environ. Sci. Technol., 29, 1223 (1995)
Shiraishi F, Yamaguchi S, Ohbuchi Y, Chem. Eng. Sci., 58(3-6), 929 (2003)
Stephanie P, Gerard L, Francoise M, J. Photochem. Photobiol. A, 157, 275 (2003)
Hathaway GJ, Proctor NH, Hughes JP, Fischman ML, Proctor and Hughes’ chemical hazards of the workplace, 3rd ed., Van Nostrand Reinhold, New York (1991)
Maroni M, Seifert B, Lindvall T, Editors, Indoor air quality-a comprehensive reference book, Elsevier, Amsterdam (1995)
Kang M, Kim BJ, Cho SM, Chung CH, Kim BW, Han GY, Yoon KJ, J. Mol. Catal. A-Chem., 180(1-2), 125 (2002)
Timothy NO, Environ. Sci. Technol., 30, 3578 (1996)
Nam W, Kim JM, Han GY, Chemosphere, 4, 1019 (2002)
Coronado JM, Zorn ME, Tejedor-Tejedor I, Anderson MA, Appl. Catal. B: Environ., 43(4), 329 (2003)
Goswami DY, J. Solar Energy Eng., 119, 101 (1997)
Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)