Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 9, 2008
Accepted September 29, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of laser beam focusing point on AFM measurements
Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea 1School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
korea1@kw.ac.kr
Korean Journal of Chemical Engineering, March 2009, 26(2), 496-499(4), 10.1007/s11814-009-0084-z
Download PDF
Abstract
The optical beam deflection method, which is used in AFM to obtain surface images, may distort the resulting image. The flexible and long cantilever is easily overdamped by the laser radiation pressure, resulting in steady deflection of the cantilever (<1 nm). This deflective force distorts the image and influences the force-distance (F-D) curve. The present study investigated the effect of laser radiation pressure on image distortion. As a proof-of-concept test, two grating samples (with step heights of 150 and 18 nm for TGX01 and TGZ01, respectively) were examined with an NSC36 series cantilever in air and water media.
References
Kim Y, Kang SK, Choi I, Lee J, Yi J, Appl. Phys. Lett., 88, 173121 (2006)
Choi I, Yi J, Korean J. Chem. Eng., 25(2), 386 (2008)
Kim Y, Choi I, Kang SK, Lee J, Yi J, Appl. Phys. Lett., 86, 073113 (2005)
Kim Y, Yi J, J. Phys. Chem. B, 110(41), 20526 (2006)
Hutter JL, Bechhoefer J, Rev. Sci. Instrum., 64, 1868 (1993)
Jones RE, Hart DP, Tribol. Int., 38, 335 (2005)
Sun Y, Pang JHL, Nanotechnology, 17, 933 (2006)
Pal S, Ghosh AK, Electronic Lett., 42, 580 (2006)
Dragoman D, Dragoman M, Appl. Opt., 38, 6773 (1996)
Kwon J, Honh J, Kim YS, Lee DY, Lee S, Park S, Rev. Sci. Instrum., 74, 4378 (2003)
Argento C, French RH, J. Appl. Phys., 80, 6081 (1996)
Ackler HD, French RH, Chiang YM, J. Colloid Interface Sci., 179(2), 460 (1996)
Carpick RW, Ogletree DF, Salmeron M, J. Colloid Interface Sci., 211(2), 395 (1999)
Choi I, Yi J, Korean J. Chem. Eng., 25(2), 386 (2008)
Kim Y, Choi I, Kang SK, Lee J, Yi J, Appl. Phys. Lett., 86, 073113 (2005)
Kim Y, Yi J, J. Phys. Chem. B, 110(41), 20526 (2006)
Hutter JL, Bechhoefer J, Rev. Sci. Instrum., 64, 1868 (1993)
Jones RE, Hart DP, Tribol. Int., 38, 335 (2005)
Sun Y, Pang JHL, Nanotechnology, 17, 933 (2006)
Pal S, Ghosh AK, Electronic Lett., 42, 580 (2006)
Dragoman D, Dragoman M, Appl. Opt., 38, 6773 (1996)
Kwon J, Honh J, Kim YS, Lee DY, Lee S, Park S, Rev. Sci. Instrum., 74, 4378 (2003)
Argento C, French RH, J. Appl. Phys., 80, 6081 (1996)
Ackler HD, French RH, Chiang YM, J. Colloid Interface Sci., 179(2), 460 (1996)
Carpick RW, Ogletree DF, Salmeron M, J. Colloid Interface Sci., 211(2), 395 (1999)