Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 8, 2008
Accepted December 15, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of pH on phase separation of globular protein
Division of Chemical Engineering and Molecular Thermodynamics Lab., Hanyang University, Seoul 133-791, Korea 1College of Architecture, Hanyang University, Seoul 133-791, Korea
Korean Journal of Chemical Engineering, May 2009, 26(3), 742-747(6), 10.1007/s11814-009-0124-8
Download PDF
Abstract
A molecular-thermodynamic framework is proposed to describe protein precipitation by inorganic salt. The equation of state consists of a hard-sphere reference contribution and a perturbation term. The reference term is derived based on the modified Chiew's model to describe the pre-aggregation effect of protein at various solution pH. In this study, we discuss protein-protein effective two-body potentials. The distribution and magnitude of charges on the surface of a protein vary significantly with pH. It changes the magnitude of charge-charge repulsion, charge-dipole attraction, dipole-dipole attraction, and induced dipole-induced dipole attraction forces between protein pairs in solution. The distribution of the charge fluctuation is slightly effective in solution pH. To investigate the effect of pH, modified charge fluctuation distribution model is proposed. Using the proposed model, we successfully describe the pH dependence of the protein precipitation.
References
Albertsson PA, Partition of cell particles and macromolecules, Wiley, New York (1986)
Askura A, Oosawa F, J. Poly. Sci., 33, 183 (1958)
Asakura S, Oosawa F, J. Chem. Phys., 22, 1255 (1954)
Chiew YC, Molec. Phys., 70, 129 (1990)
Coen CJ, Blanch HW, Prausnitz JM, AIChE J., 41, 1 (1995)
Hek DH, Vrij A, J. Colloid Interf. Sci., 41, 996 (1995)
Foster PR, Dunhill P, Lilly MD, Biochem. Biophys. Acta., 317, 505 (1975)
Gast AP, Hall CK, Russel WG, J. Colloid Interf. Sci., 96, 251 (1983)
Gast AP, Hall CK, Russel WG, J. Farad. Discuss. Chem. Soc., 76, 189 (1983)
Grimson MJ, J. Chem. Soc. Farad. Trans., 79, 817 (1983)
Haire RN, Tisel WA, White JC, Rosenberg A, Biopolymers, 23, 2761 (1984)
Hamaker HC, Physica IV, 10, 1058 (1937)
Kirkwood JG, Shumaker, J. B. Proc. Natl. Acad. Sci., 38, 863 (1952)
Kuehner DE, Blanch HW, Prausnitz JM, Fluid Phase Equilib., 116(1-2), 140 (1996)
Kuehner D, Heyer C, Ramsch C, Fornefeld UM, Blanch HW, Prausnitz JM, Biophysical J., 73, 3211 (1997)
Mahadevan H, Hall CK, AIChE J., 36, 1517 (1990)
Moreira LA, Bostrom M, Ninham BW, Biscaia EC, Tavares FW, Colloids and Surfaces A: Physicochem. Eng. Aspects, 282, 457 (2006)
Niederauer MQ, Glatz CE, Adv. Biochem. Eng. Technol., 47, 159 (1992)
Phillies GDJ, J. Chem. Phys., 60, 2721 (1974)
Rothstein F, in Protein precipitation process engineering, Harrion RG, ed., Dekker, New York (1994)
Shih YC, Blanch HW, Prausnitz JM, Biotech. Bioeng., 40, 1155 (1992)
Tavares FW, Sandler SI, AIChE J., 43(1), 218 (1997)
Verwey E, Overbeek J, Theory of stability of lyophobic colloids, Elsevier, Amsterdam (1948)
Victor JM, Hansen JP, J. Phys. Lett., 45, L307 (1984)
Vlachy V, Prausnitz JM, J. Phys. Chem., 96, 6465 (1992)
Vlachy V, Blanch HW, Prausnitz JM, AIChE J., 39, 215 (1993)
Vrij A, Pure and Appl. Chem., 48, 471 (1976)
Tao J, Johansson JS, Haynes DH, Biochim Biophys Acta., 1105, 19 (1992)
Mahadevan H, Hall CK, AIChE J., 38, 573 (1992)
Askura A, Oosawa F, J. Poly. Sci., 33, 183 (1958)
Asakura S, Oosawa F, J. Chem. Phys., 22, 1255 (1954)
Chiew YC, Molec. Phys., 70, 129 (1990)
Coen CJ, Blanch HW, Prausnitz JM, AIChE J., 41, 1 (1995)
Hek DH, Vrij A, J. Colloid Interf. Sci., 41, 996 (1995)
Foster PR, Dunhill P, Lilly MD, Biochem. Biophys. Acta., 317, 505 (1975)
Gast AP, Hall CK, Russel WG, J. Colloid Interf. Sci., 96, 251 (1983)
Gast AP, Hall CK, Russel WG, J. Farad. Discuss. Chem. Soc., 76, 189 (1983)
Grimson MJ, J. Chem. Soc. Farad. Trans., 79, 817 (1983)
Haire RN, Tisel WA, White JC, Rosenberg A, Biopolymers, 23, 2761 (1984)
Hamaker HC, Physica IV, 10, 1058 (1937)
Kirkwood JG, Shumaker, J. B. Proc. Natl. Acad. Sci., 38, 863 (1952)
Kuehner DE, Blanch HW, Prausnitz JM, Fluid Phase Equilib., 116(1-2), 140 (1996)
Kuehner D, Heyer C, Ramsch C, Fornefeld UM, Blanch HW, Prausnitz JM, Biophysical J., 73, 3211 (1997)
Mahadevan H, Hall CK, AIChE J., 36, 1517 (1990)
Moreira LA, Bostrom M, Ninham BW, Biscaia EC, Tavares FW, Colloids and Surfaces A: Physicochem. Eng. Aspects, 282, 457 (2006)
Niederauer MQ, Glatz CE, Adv. Biochem. Eng. Technol., 47, 159 (1992)
Phillies GDJ, J. Chem. Phys., 60, 2721 (1974)
Rothstein F, in Protein precipitation process engineering, Harrion RG, ed., Dekker, New York (1994)
Shih YC, Blanch HW, Prausnitz JM, Biotech. Bioeng., 40, 1155 (1992)
Tavares FW, Sandler SI, AIChE J., 43(1), 218 (1997)
Verwey E, Overbeek J, Theory of stability of lyophobic colloids, Elsevier, Amsterdam (1948)
Victor JM, Hansen JP, J. Phys. Lett., 45, L307 (1984)
Vlachy V, Prausnitz JM, J. Phys. Chem., 96, 6465 (1992)
Vlachy V, Blanch HW, Prausnitz JM, AIChE J., 39, 215 (1993)
Vrij A, Pure and Appl. Chem., 48, 471 (1976)
Tao J, Johansson JS, Haynes DH, Biochim Biophys Acta., 1105, 19 (1992)
Mahadevan H, Hall CK, AIChE J., 38, 573 (1992)