Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 7, 2008
Accepted January 22, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts
Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea 1Engineering education innovation center, Ajou University, Suwon 443-749, Korea
Korean Journal of Chemical Engineering, July 2009, 26(4), 1040-1046(7), 10.1007/s11814-009-0173-z
Download PDF
Abstract
Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m2/g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm2, the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm2 at 25 ℃. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9M, the maximum power density was decreased from 75.8 to 40.7 mW/cm2 at 25 ℃. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.
References
Dillon R, Srinivasan S, Arico AS, Antonucci V, J. Power Sources, 127(1-2), 112 (2004)
Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119 (2004)
Rice C, Ha S, Masel RI, Wieckowski A, J. Power Sources, 115(2), 229 (2003)
Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655 (2002)
Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
Xia XH, Iwasita T, J. Electrochem. Soc., 140, 2559 (1993)
Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91 (1995)
Parsons R, VanderNoot T, J. Electroanal. Chem., 257, 9 (1998)
Jiang J, Kucernak A, J. Electroanal. Chem., 520(1-2), 64 (2002)
Kim JS, Yu JK, Lee HS, Kim JY, Kim YC, Han JH, Oh IH, Rhee YW, Korean J. Chem. Eng., 22(5), 661 (2005)
Kim KH, Yu JK, Lee HS, Choi JH, Noh SY, Yoon SK, Lee CS, Hwang TS, Rhee YW, Korean J. Chem. Eng., 24(3), 518 (2007)
Wang X, Tang Y, Gao Y, Lu T, J. Power Sources, 175, 784 (2008)
Ha S, Laesen R, Masel RI, J. Power Sources, 114, 28 (2005)
Zhang LL, Tang YW, Bao JC, Lu TH, Li C, J. Power Sources, 162(1), 177 (2006)
Yang S, Zhang X, Mi H, Ye X, J. Power Sources, 175, 26 (2008)
Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831 (2006)
Nam KD, Kim TJ, Kim SK, Lee BR, Peck DH, Ryu SK, Jung DH, J. Korean Ind. Eng. Chem., 17(2), 223 (2006)
Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8 (2004)
Nakagawa N, Xiu Y, J. Power Sources, 118(1-2), 248 (2003)
Yu JK, Lee HS, Kim KH, Kim YC, Han JH, Oh IH, Rhee YW, Korean Chem. Eng. Res., 44(3), 314 (2006)
Rieke PC, Vanderborgh NE, J. Membrane Science, 32, 313 (1987)
Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119 (2004)
Rice C, Ha S, Masel RI, Wieckowski A, J. Power Sources, 115(2), 229 (2003)
Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655 (2002)
Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
Xia XH, Iwasita T, J. Electrochem. Soc., 140, 2559 (1993)
Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91 (1995)
Parsons R, VanderNoot T, J. Electroanal. Chem., 257, 9 (1998)
Jiang J, Kucernak A, J. Electroanal. Chem., 520(1-2), 64 (2002)
Kim JS, Yu JK, Lee HS, Kim JY, Kim YC, Han JH, Oh IH, Rhee YW, Korean J. Chem. Eng., 22(5), 661 (2005)
Kim KH, Yu JK, Lee HS, Choi JH, Noh SY, Yoon SK, Lee CS, Hwang TS, Rhee YW, Korean J. Chem. Eng., 24(3), 518 (2007)
Wang X, Tang Y, Gao Y, Lu T, J. Power Sources, 175, 784 (2008)
Ha S, Laesen R, Masel RI, J. Power Sources, 114, 28 (2005)
Zhang LL, Tang YW, Bao JC, Lu TH, Li C, J. Power Sources, 162(1), 177 (2006)
Yang S, Zhang X, Mi H, Ye X, J. Power Sources, 175, 26 (2008)
Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831 (2006)
Nam KD, Kim TJ, Kim SK, Lee BR, Peck DH, Ryu SK, Jung DH, J. Korean Ind. Eng. Chem., 17(2), 223 (2006)
Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8 (2004)
Nakagawa N, Xiu Y, J. Power Sources, 118(1-2), 248 (2003)
Yu JK, Lee HS, Kim KH, Kim YC, Han JH, Oh IH, Rhee YW, Korean Chem. Eng. Res., 44(3), 314 (2006)
Rieke PC, Vanderborgh NE, J. Membrane Science, 32, 313 (1987)