Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2008
Accepted December 31, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A numerical study of the Dufour and Soret effects on unsteady natural convection flow past an isothermal vertical cylinder
1College of Advanced Technology, Kyung Hee University, Yongin 449-701, Korea 2Department of Mathematics and Humanities, National Institute of Technology, Waragal, India 3Industrial Liaison Research Institute, Kyung Hee University, Yongin 449-701, Korea
cnkim@khu.ac.kr
Korean Journal of Chemical Engineering, July 2009, 26(4), 946-954(9), 10.1007/s11814-009-0158-y
Download PDF
Abstract
The Dufour and Soret effects on the unsteady laminar free convective flow with mass transfer flow past a semi-infinite isothermal vertical cylinder were studied numerically. The governing partial differential equations were converted into a non-dimensional form and solved numerically by applying a Crank-Nicolson type of implicit finitedifference method with a tri-diagonal matrix manipulation and an iterative procedure. For the hydrogen-air mixture, which is a non-chemical reacting fluid, the profiles of the unsteady dimensionless velocity, temperature and concentration_x000D_
are shown graphically for the different values of thermal and mass Grashof numbers, thermal diffusion parameters (Soret numbers) and diffusion-thermo parameters (Dufour numbers). Finally, the simulated values of the average skin-friction coefficient, the average Nusselt number and the average Sherwood number are presented. The numerical results reveal that for an increasing Soret number or decreasing Dufour number, the time to reach the temporal maximum and the steady-state decreases for the flow variables. As the Soret number increases or the Dufour number decreases, both the skin friction and the Sherwood number increase, whereas the Nusselt number decreases.
References
Bottemanne FA, Appl. Sci. Res., 25, 372 (1972)
Gebhart B, Pera L, Int. J. Heat Mass Trans., 14, 2025 (1971)
Chen TS, Yuh CF, Int. J. Heat Mass Trans., 23, 451 (1980)
Goldstein RJ, Briggs DG, J. Heat Trans., 86, 490 (1964)
Dring RP, Gebhart B, Tran. ASME J. Heat Tran., 88, 246 (1966)
Velusamy K, Garg VK, Int. J. Heat Trans., 35, 1293 (1992)
Anghel M, Takhar HS, Pop I, Studia Universitatis Babes-Bolyai, Mathematica, XLV, 4, 11 (2000)
Dursunkaya Z, Worek WM, Int. J. Heat Mass Trans., 35, 2060 (1992)
Eckert ERG, Drake RM, Analysis of heat and mass transfer, McGraw-Hill, New York (1972)
Postelnicu A, Int. J. Heat Mass Transf., 47(6-7), 1467 (2004)
Seddeek MA, Acta Mechanica, 172, 83 (2004)
Eldabe NT, El-Saka AG, Fouad A, Appl. Math. Comput., 152, 867 (2004)
Alam MS, Rahman MM, Nonlinear Analysis: Modelling and Control, 11, 3 (2006)
Salem AM, Commun. Numer. Meth. Engng., 22, 955 (2006)
Carnahan B, Luther HA, Wilkes JO, Applied numerical methods, John Wiley & Sons, New York (1969)
Ganesan P, Rani HP, Heat Mass Transfer, 33, 449 (1998)
Kafoussias NG, Williams EW, Int. J. Engng. Sci., 33, 1369 (1995)
Gebhart B, Heat transfer, 2nd ed., McGraw-Hill, New York (1971)
Gebhart B, Pera L, Int. J. Heat Mass Trans., 14, 2025 (1971)
Chen TS, Yuh CF, Int. J. Heat Mass Trans., 23, 451 (1980)
Goldstein RJ, Briggs DG, J. Heat Trans., 86, 490 (1964)
Dring RP, Gebhart B, Tran. ASME J. Heat Tran., 88, 246 (1966)
Velusamy K, Garg VK, Int. J. Heat Trans., 35, 1293 (1992)
Anghel M, Takhar HS, Pop I, Studia Universitatis Babes-Bolyai, Mathematica, XLV, 4, 11 (2000)
Dursunkaya Z, Worek WM, Int. J. Heat Mass Trans., 35, 2060 (1992)
Eckert ERG, Drake RM, Analysis of heat and mass transfer, McGraw-Hill, New York (1972)
Postelnicu A, Int. J. Heat Mass Transf., 47(6-7), 1467 (2004)
Seddeek MA, Acta Mechanica, 172, 83 (2004)
Eldabe NT, El-Saka AG, Fouad A, Appl. Math. Comput., 152, 867 (2004)
Alam MS, Rahman MM, Nonlinear Analysis: Modelling and Control, 11, 3 (2006)
Salem AM, Commun. Numer. Meth. Engng., 22, 955 (2006)
Carnahan B, Luther HA, Wilkes JO, Applied numerical methods, John Wiley & Sons, New York (1969)
Ganesan P, Rani HP, Heat Mass Transfer, 33, 449 (1998)
Kafoussias NG, Williams EW, Int. J. Engng. Sci., 33, 1369 (1995)
Gebhart B, Heat transfer, 2nd ed., McGraw-Hill, New York (1971)