Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 2, 2009
Accepted February 25, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Degradation of proton exchange membrane by Pt dissolved/deposited in fuel cells
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon-si, Jeollanam-do 540-742, Korea 1HMC Eco Technology Research Institute, 104 Mabuk-dong,Giheung-gu, Youngin-si, Gyunggi-do 446-912, Korea
parkkp@sunchon.ac.kr
Korean Journal of Chemical Engineering, September 2009, 26(5), 1265-1271(7), 10.1007/s11814-009-0212-9
Download PDF
Abstract
An accelerated single cell test and single electrode cell test were carried out to investigate membrane degradation by Pt dissolved/deposited on the membrane. For a cell operating under accelerated conditions (OCV, 90 ℃, anode RH 0%, cathode O2 supply), MEA analyses revealed that Pt particles were deposited in the membrane at the anode side, with a decrease in F, O, and C content near the anode side of the membrane. Dissolved Pt from the cathode showed that Pt existed mainly in the form of Pt2+ ionic species. Oxygen and hydrogen helped Pt dissolution from the cathode and Pt deposition in the membrane, respectively. Radical formation on deposited Pt in the membrane was detected by electron spin resonance (ESR). Fluoride emission rate (FER, an indicator of membrane degradation rate) increased with an increase in the amount of Pt in the membrane.
References
Wilkinson DP, St-Pierre J, Handbook of fuel cells Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611 (2003)
Laconti AB, Hamdan M, MacDonald RC, Handbook of fuel cells Vol. 3, John Wiley & Sons Ltd., Chichester, England, 647 (2003)
Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
Mittal VO, Kunz HR, Fenton JM, J. Electrochem. Soc., 153(9), A1755 (2006)
Mittal VO, Kunz HR, Fenton JM, J. Electrochem. Soc., 154, 652 (2007)
Patterson T, in AICHE Spring National Meeting Proceedings, New Orleans, LA, lgwe GI and Mah D, eds., 313 (2002)
Wang XP, Kumar R, Myers DJ, Electrochem. Solid State Lett., 9(5), A225 (2006)
Ohama A, Suga S, Yamamoto S, Shinohara K, J. Electrochem. Soc., 54, B757 (2007)
Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7(7), A209 (2004)
Kocha SS, Handbook of fuel cells Vol. 3, John Wiley & Sons Ltd., Chichester, England, 538 (2003)
Mittal VO, Kunz HR, Fenton JM, Electrochem. Solid State Lett., 9(6), A299 (2006)
Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M, J. Electrochem. Soc., 154(1), B96 (2007)
Laconti AB, Hamdan M, MacDonald RC, Handbook of fuel cells Vol. 3, John Wiley & Sons Ltd., Chichester, England, 647 (2003)
Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
Mittal VO, Kunz HR, Fenton JM, J. Electrochem. Soc., 153(9), A1755 (2006)
Mittal VO, Kunz HR, Fenton JM, J. Electrochem. Soc., 154, 652 (2007)
Patterson T, in AICHE Spring National Meeting Proceedings, New Orleans, LA, lgwe GI and Mah D, eds., 313 (2002)
Wang XP, Kumar R, Myers DJ, Electrochem. Solid State Lett., 9(5), A225 (2006)
Ohama A, Suga S, Yamamoto S, Shinohara K, J. Electrochem. Soc., 54, B757 (2007)
Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7(7), A209 (2004)
Kocha SS, Handbook of fuel cells Vol. 3, John Wiley & Sons Ltd., Chichester, England, 538 (2003)
Mittal VO, Kunz HR, Fenton JM, Electrochem. Solid State Lett., 9(6), A299 (2006)
Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M, J. Electrochem. Soc., 154(1), B96 (2007)