Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 11, 2009
Accepted March 3, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Sorption kinetics of carbon dioxide onto rubidium carbonate
Division of Chemical Engineering, Pusan National University, Busan 609-735, Korea 1School of Environmental Science, Catholic University of Pusan, Busan 609-757, Korea
swpark@pusan.ac.kr
Korean Journal of Chemical Engineering, September 2009, 26(5), 1383-1388(6), 10.1007/s11814-009-0218-3
Download PDF
Abstract
Rubidium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of CO2. Experiments were carried out at flow rates of carbon dioxide and nitrogen (5×10^(-6)-35×10^(-6) m3/min), moisture (0.5×10^(-6)-3.0×10^(-6) m3/h), amount of adsorbent (0.5×10^(-3)-1.8×10^(-3) kg), mole fraction of carbon dioxide (0.03-0.22), and different sorption temperatures (323-353 K) at atmospheric pressure. The deactivation model in the non-catalytic heterogeneous reaction systems was used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture, employing the experimental breakthrough data that fit the deactivation model better than the adsorption isotherm models in the literature.
References
Aresta M, Carbon dioxide recovery and utilization, Kluwer Aca-demic Pub., Boston (2003)
Bartoo RK, Chem. Eng. Prog., 80, 35 (1984)
Fuchs W, Syosett NT, US Patent 3,511,595 (1970)
Gidaspow D, Onischak M, US Patent 3,865,924 (1975)
Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc. Jpn., 68, 1030 (1995)
Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185 (1998)
Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711 (2005)
Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355 (2004)
Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 87, 1911 (1991)
Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday, Trans., 87, 3683 (1991)
Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 88, 631 (1992)
Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90 (2001)
Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y
Doraiswamy LK, Sharma MM, Heterogeneous reactions, vol. 1, John Wiley & Sons, Inc., New York (1984)
Ishida M, Wen CY, AIChE J., 14, 311 (1968)
Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Des. Dev., 19, 717 (1980)
Evans JW, Song S, Ind. Eng. Chem. Process Des. Dev., 13, 146 (1974)
Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135 (1975)
Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Dev., 19, 118 (1980)
Ruthven DW, Principles of adsorption and adsorption processes, John & Wiley, New York (1984)
Suzuki M, Adsorption engineering, Kodansga Ltd., Tokyo (1990)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314 (1982)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Suyadal Y, Erol M, Oguz M, Ind. Eng. Chem. Res., 39, 7249 (2000)
Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665 (2006)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Dogu T, AIChE J., 32, 849 (1986)
Bartoo RK, Chem. Eng. Prog., 80, 35 (1984)
Fuchs W, Syosett NT, US Patent 3,511,595 (1970)
Gidaspow D, Onischak M, US Patent 3,865,924 (1975)
Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc. Jpn., 68, 1030 (1995)
Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185 (1998)
Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711 (2005)
Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355 (2004)
Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 87, 1911 (1991)
Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday, Trans., 87, 3683 (1991)
Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday, Trans., 88, 631 (1992)
Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90 (2001)
Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y
Doraiswamy LK, Sharma MM, Heterogeneous reactions, vol. 1, John Wiley & Sons, Inc., New York (1984)
Ishida M, Wen CY, AIChE J., 14, 311 (1968)
Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Des. Dev., 19, 717 (1980)
Evans JW, Song S, Ind. Eng. Chem. Process Des. Dev., 13, 146 (1974)
Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135 (1975)
Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Dev., 19, 118 (1980)
Ruthven DW, Principles of adsorption and adsorption processes, John & Wiley, New York (1984)
Suzuki M, Adsorption engineering, Kodansga Ltd., Tokyo (1990)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314 (1982)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
Kopac T, Kocabas S, Chem. Eng. Commun., 190(5-8), 1041 (2003)
Suyadal Y, Erol M, Oguz M, Ind. Eng. Chem. Res., 39, 7249 (2000)
Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665 (2006)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Dogu T, AIChE J., 32, 849 (1986)