ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 29, 2008
Accepted February 6, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 capture from flue gases using a fluidized bed reactor with limestone

Key Lab for Thermal Science and Power Engineering of the Ministry of Education (MOE),Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
cains@tsinghua.edu.cn
Korean Journal of Chemical Engineering, September 2009, 26(5), 1414-1421(8), 10.1007/s11814-009-0198-3
downloadDownload PDF

Abstract

The CO2 capture from flue gases by a small fluidized bed reactor was experimentally investigated with limestone. The results showed that CO2 in flue gases could be captured by limestone with high efficiency, but the CO2 capture capacity of limestone decayed with the increasing of carbonation/calcination cycles. From a practical point of view, coal may be required to provide the heat for CaCO3 calcination, resulting in some potential effect on the sorbent capacity of CO2 capture. Experiment results indicated that the variation in the capacity of CO2 capture by using a limestone/coal ash mixture with a cyclic number was qualitatively similar to the variation of the capacity of CO2 capture using limestone only. Cyclic stability of limestone only undergoing the kinetically controlled stage in the carbonation process had negligible difference with that of the limestone undergoing both the kinetically controlled stage and the product layer diffusion controlled stage. Based on the experimental data, a model for the high-velocity fluidized bed carbonator that consists of a dense bed zone and a riser zone was developed. The model predicted that high CO2 capture efficiencies (>80%) were achievable for a range of reasonable operating conditions by the high-velocity fluidized bed carbonator in a continuous carbonation and calcination system.

References

Houghton JT, Climate change 1995: The science of climate change, Cambridge University Press Publications, Cambridge (1996)
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77(1), 62 (1999)
Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D, AIChE J., 50(7), 1614 (2004)
Li ZS, Cai NS, Eric C, AIChE J., 54, 1912 (2008)
Li ZS, Cai NS, Huang YY, Ind. Eng. Chem. Res., 45(6), 1911 (2006)
Li ZS, Cai NS, Huang YY, Han HJ, Energy Fuels, 19(4), 1447 (2005)
Kuramoto K, Shibano S, Fujimoto S, Kimura T, Suzuki Y, Hatano H, Lin SY, Harada M, Morishita K, Takarada T, Ind. Eng. Chem. Res., 42(15), 3566 (2003)
Abanades JC, Alvarez D, Energy Fuels, 17(2), 308 (2003)
Ryu HJ, Grace JR, Lim CJ, Energy Fuels, 20(4), 1621 (2006)
Fang F, Li ZS, Cai NS, Energy & Fuels, 23, 207 (2009)
Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178 (2008)
Jin GT, Ryu HJ, Jo SH, Lee SY, Son SR, Kim SD, Korean J. Chem. Eng., 24(3), 542 (2007)
Song KS, Seo YS, Yoon HK, Cho SJ, Korean J. Chem. Eng., 20(3), 471 (2003)
Ryu HJ, Jin GT, Korean J. Chem. Eng., 24(3), 527 (2007)
Li ZS, Fang F, Cai NS, Journal of Engineering for Thermal Energy and Power, 22, 642 (2007)
Silaban A, Harrison P, Chem. Eng. Commun., 137, 177 (1995)
Borgwardt RH, Ind. Eng. Chem. Res., 28, 493 (1989)
Kunii D, Levenspiel O, Ind. Eng. Chem. Res., 29, 1226 (1990)
Pugsley TS, Berruti F, Powder Technol., 89(1), 57 (1996)
Pugsley TS, Berruti F, Chem. Eng. Sci., 51(11), 2751 (1996)
Patience GS, Chaouki J, Chem. Eng. Sci., 48, 3195 (1993)
Bi HT, Can. J. Chem. Eng., 80(5), 809 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로