Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 19, 2008
Accepted March 31, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
The optimization of the photo-oxidation parameters to remediate wastewater from the textile dyeing industry in a continuous stirred tank reactor
1Department of Chemical Technology, Chulalongkorn University, Bangkok 10330, Thailand 2Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand
mali.h@chula.ac.th
Korean Journal of Chemical Engineering, November 2009, 26(6), 1637-1644(8), 10.1007/s11814-009-0247-y
Download PDF
Abstract
The remediation of textile dying wastewater was carried out at ambient temperatures in a pilot-scale continuous stirred tank reactor by using the photo-Fenton oxidation process. The preliminary results suggest that the treatment system reached a steady state condition within 5-10 min after it was started up. By using a 2^(k) factorial design, the effects of various parameters on the removal efficiency of color, BOD and COD were identified under steady state conditions. The removal efficiencies of color and BOD were affected by the feed rate of H2O2 and Fe^(2+), whereas none of the parameters in the investigated ranges affected the removal efficiency of COD. Consequently, using univariate analysis to investigate higher parameter range values, the optimum conditions for treating textile wastewater were found to be 25 ml H2O2/min, 5 ml Fe^(2+)/min and 90 W UV-A power for 20 min. In addition, the removal of all pollutants was enhanced within the acidic pH range. Approximately 69.2, 99.4 and 48.5% of color, BOD and COD were removed, respectively. However, the concentration of TDS increased slightly during the treatment period due to the formation of new species or intermediate oxidation products. Nevertheless, all values of pollutants in the treated wastewater except COD were in the range of the standard values permitted for discharge into the environment.
Keywords
References
DPPEA Water Efficiency Industry Specific Processes, www.p2pays.org/ref/04/03098.pdf. (1996)
Sojka-Ledakowicz J, Koprowski T, Machnowski W, Knudsen HH, Desalination, 119(1-3), 1 (1998)
Desai ID, Bhardwaj IS, Recent biotechnological trends in industrial effluent treatment, Biotech Consortium Indai Ltd., New Delhi (1995)
Banat IM, Nigam P, Singh D, Marchant R, Bioresour. Technol., 58(3), 217 (1996)
Shah SS, Desai JD, Ramakrishna C, Bhatt NM, J. Ferment. Bioeng., 86(2), 215 (1998)
Venceslau PC, Tom S, Simon JJ, Environ. Technol., 15, 917 (1994)
Vandevivere PC, Bianchi R, Verstraete W, J. Chem. Technol. Biotechnol., 72(4), 289 (1998)
Barlas H, Akgun T, Fresenius Environ. Bul., 9, 597 (2000)
Abdo MSE, Al-Ameeri RS, J. Environ. Sci. Health A., 22, 27 (1987)
Naumczyk L, Szpyrkowicz L, Zilio-Grandi F, Water Sci. Technol., 34, 216 (1996)
Vlyssides AG, Israilides CJ, J. Environ. Sci. Health A., 33, 847 (1998)
Ciardelli G, Capannelli G, Bottino A, Water Sci. Technol., 44, 61 (2001)
Ince NH, Tezcanl G, Water Sci. Technol., 40, 183 (1999)
Los L, Perkowski J, Fibers Text. East. Eur., 11, 81 (2003)
Shimoda S, Prengle HW, Symons JM, Water Manage., 17, 475 (1975)
Lin SH, Cho CL, Water Res., 31, 1825 (1997)
Szpyrkowicz L, Juzzolino C, Kaul SN, Water Res., 35, 2129 (2001)
Kang SF, Liao CH, Chen MC, Chemosphere, 46, 979 (2002)
Koprivanac N, Kusic H, Vujevic D, Peternel I, Locke BR, J. Hazard. Mater., 117(2-3), 113 (2005)
Kang SF, Liao CH, Hung HP, J. Hazard. Mater. B, 65, 317 (1999)
Faust BC, Hoigne J, Atmos. Environ. A, 24, 791 (1990)
Walling C, Kato S, J. American Chem. Soc., 93, 4275 (1971)
Kang SF, Liao CH, Po ST, Chemosphere, 41, 1287 (2000)
APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed. Part 3111 B (1998)
Sahunin C, Kaewboran J, Hunsom M, Sci. Asia, 32, 181 (2006)
Montgomery DC, Design and analysis of experiments, 5th ed., John Wiley & Sons Ltd., New York (2001)
Marco SL, Jose AP, Dyes Pigments, 71, 235 (2005)
Kongjao S, Damronglerd S, Hunsom M, Korean J. Chem. Eng., 24(5), 730 (2007)
Benkelberg HJ, Warneck P, J. Phys. Chem., 99(14), 5214 (1995)
Kim SM, Geissen S, Vogelpohl A, Water Sci. Technol., 35, 239 (1999)
Pignatello JJ, Liu D, Huston P, Envir. Sci. Technol., 33, 1832 (1999)
Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobiko Y, Chem. Eng. J., 108(3), 269 (2005)
Solozhenko EG, Soboleva NM, Goncharuk VV, Water Res., 29, 2206 (1995)
Yang M, Hu J, Ito K, Environ. Technol., 19, 183 (1998)
Muruganandham M, Swaminathan M, Dyes Pigments, 63, 315 (2004)
Kadirvelu K, Palanival M, Kalpana R, Rajeswari S, Bioresour. Technol., 74(3), 263 (2000)
Selcuk H, Dyes Pigments, 64, 217 (2005)
Sojka-Ledakowicz J, Koprowski T, Machnowski W, Knudsen HH, Desalination, 119(1-3), 1 (1998)
Desai ID, Bhardwaj IS, Recent biotechnological trends in industrial effluent treatment, Biotech Consortium Indai Ltd., New Delhi (1995)
Banat IM, Nigam P, Singh D, Marchant R, Bioresour. Technol., 58(3), 217 (1996)
Shah SS, Desai JD, Ramakrishna C, Bhatt NM, J. Ferment. Bioeng., 86(2), 215 (1998)
Venceslau PC, Tom S, Simon JJ, Environ. Technol., 15, 917 (1994)
Vandevivere PC, Bianchi R, Verstraete W, J. Chem. Technol. Biotechnol., 72(4), 289 (1998)
Barlas H, Akgun T, Fresenius Environ. Bul., 9, 597 (2000)
Abdo MSE, Al-Ameeri RS, J. Environ. Sci. Health A., 22, 27 (1987)
Naumczyk L, Szpyrkowicz L, Zilio-Grandi F, Water Sci. Technol., 34, 216 (1996)
Vlyssides AG, Israilides CJ, J. Environ. Sci. Health A., 33, 847 (1998)
Ciardelli G, Capannelli G, Bottino A, Water Sci. Technol., 44, 61 (2001)
Ince NH, Tezcanl G, Water Sci. Technol., 40, 183 (1999)
Los L, Perkowski J, Fibers Text. East. Eur., 11, 81 (2003)
Shimoda S, Prengle HW, Symons JM, Water Manage., 17, 475 (1975)
Lin SH, Cho CL, Water Res., 31, 1825 (1997)
Szpyrkowicz L, Juzzolino C, Kaul SN, Water Res., 35, 2129 (2001)
Kang SF, Liao CH, Chen MC, Chemosphere, 46, 979 (2002)
Koprivanac N, Kusic H, Vujevic D, Peternel I, Locke BR, J. Hazard. Mater., 117(2-3), 113 (2005)
Kang SF, Liao CH, Hung HP, J. Hazard. Mater. B, 65, 317 (1999)
Faust BC, Hoigne J, Atmos. Environ. A, 24, 791 (1990)
Walling C, Kato S, J. American Chem. Soc., 93, 4275 (1971)
Kang SF, Liao CH, Po ST, Chemosphere, 41, 1287 (2000)
APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed. Part 3111 B (1998)
Sahunin C, Kaewboran J, Hunsom M, Sci. Asia, 32, 181 (2006)
Montgomery DC, Design and analysis of experiments, 5th ed., John Wiley & Sons Ltd., New York (2001)
Marco SL, Jose AP, Dyes Pigments, 71, 235 (2005)
Kongjao S, Damronglerd S, Hunsom M, Korean J. Chem. Eng., 24(5), 730 (2007)
Benkelberg HJ, Warneck P, J. Phys. Chem., 99(14), 5214 (1995)
Kim SM, Geissen S, Vogelpohl A, Water Sci. Technol., 35, 239 (1999)
Pignatello JJ, Liu D, Huston P, Envir. Sci. Technol., 33, 1832 (1999)
Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobiko Y, Chem. Eng. J., 108(3), 269 (2005)
Solozhenko EG, Soboleva NM, Goncharuk VV, Water Res., 29, 2206 (1995)
Yang M, Hu J, Ito K, Environ. Technol., 19, 183 (1998)
Muruganandham M, Swaminathan M, Dyes Pigments, 63, 315 (2004)
Kadirvelu K, Palanival M, Kalpana R, Rajeswari S, Bioresour. Technol., 74(3), 263 (2000)
Selcuk H, Dyes Pigments, 64, 217 (2005)