ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 17, 2008
Accepted March 29, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rapid differentiation of new isolates with MALDI-TOF mass spectrometry via discriminant function analysis based on principal components

Department of Bioengineering, Marmara University, Kadikoy 34722, Istanbul, Turkey
Korean Journal of Chemical Engineering, November 2009, 26(6), 1645-1651(7), 10.1007/s11814-009-0243-2
downloadDownload PDF

Abstract

Discriminant function analysis based on principal components was applied to the spectral outputs of whole cell suspensions of nine isolates from matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. First, based on the salt tolerance and whole cell proteins, the similarity of the isolates to moderate halophiles was established. Intact microorganisms were then inferentially clustered by MALDI-TOF mass spectroscopy taking_x000D_ four type strains as precursors. Two of these type strains were moderate halophilic bacteria (Halomonas salina and Halomonas halophila), one was a mesophilic bacteria (Escherichia coli), and one was a halophilic archaea (Haloarcula vallismortis). Results showed that the isolates were significantly similar to halophiles but were different from a mesophile. This investigation demonstrates the feasibility of using whole cell suspensions for rapid differentiation prior_x000D_ to extensive experimentation.

References

Oren A, J. Ind. Microbiol. Biot., 28, 56 (2002)
Goodacre R, Trew S, Wrigleyjones C, Neal MJ, Maddock J, Ottley TW, Porter N, Kell DB, Biotechnol. Bioeng., 44(10), 1205 (1994)
Roepstorff P, Curr. Opin. Biotech., 8, 6 (1997)
Black GE, Fox A (1996) In: Snyder PA (ed.) Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry, Vol. DCXIX. American Chemical Society, Washington DC, 81-105 (1996)
Vanlaere E, Sergeant K, Dawyndt P, Kallow W, Erhard M, Sutton H, Dare D, Devreese B, Samyn B, Vandamme P, J. Microbiological Methods, 75, 279 (2008)
Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Dohren H, Appl. Microbiol. Biotechnol., 67(4), 539 (2005)
Keys CJ, Dare DJ, Sutton H, Wells G, Lunt M, McKenna K, McDowall M, Shah HN, Infect. Genet. Evol., 4, 221 (2004)
Kumar MP, Vairamani M, Raju RP, Lobo C, Abumani N, Kumar CP, Menon T, Shanmugasundaram S, Indian J. Med. Res., 119, 283 (2004)
Pribil P, Fenselau C, Anal. Chem., 77, 6092 (2005)
Ruelle V, Moualij B, Zorzi W, Ledent P, Pauw ED, Rapid Commun. Mass Spectrom., 18, 2013 (2004)
Van Baar BL, Fems Microbiol. Rev., 24, 193 (2000)
Dalluge JJ, Fresenius J. Anal. Chem., 366, 701 (2000)
Fox A, J. Clin. Microbiol., 44, 2677 (2006)
Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG, Nat. Rev. Microbiol., 3, 557 (2005)
Siegrist TJ, Anderson PD, Huen WE, Kleinheinz GT, Mcdermott CM, Sandrin TR, J. Microbiol. Methods, 68, 554 (2007)
Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK, Appl. Environ. Microbiol., 71, 6292 (2005)
Goodacre R, Heald JK, Kell DB, FEMS Microbiol. Lett., 176, 17 (1999)
Allen J, Davey HM, Broashurst D, Heald JK, Rowland JJ, Oliver SG, Nat. Biotechnol., 21, 692 (2003)
Timmins EM, Howell AS, Alsberg BK, Noble WC, Goodacre R, J. Clin. Microbiol., 36, 367 (1998)
Vaidyanathan S, Rowland JJ, Kell DB, Goodacre R, Anal. Chem., 73, 4134 (2001)
Zhao H, Parry RL, Ellis DI, Griffith GW, Goodacre R, Vib. Spectrosc., 40, 213 (2006)
O’Farrel PZ, Goodman HM, O’Farrel PH, Cell, 12, 1133 (1977)
Laemmli UK, Nature, 227, 680 (1970)
Blum H, Beier H, Gross HJ, Electrophoresis, 8, 93 (1987)
Bakshi BR, AIChE J., 44, 1596 (1987)
Eriksson L, Johansson E, Kettaneh-Wold N, Wold S, Multiand megavariate data analysis; principles and applications, Umetrics AB, Umea, Sweden (Chapter 3) (2001)
http://www2.chass.ncsu.edu/garson/pa765/discrim.htm.
http://www.statsoft.com/textbook/stathome.html.
Dixon WJ, Biomedical computer programs, Los Angeles:University of California Press (1975)
MacFie HJH, Gutteridge CS, Norris JR, J. Gen. Microbiol., 104, 67 (1978)
http://personalpages.manchester.ac.uk/staff/Roy.Goodacre.
Jain AK, Murty MN, Flynn PJ, ACM Comput. Surv., 31, 264 (1999)
Akman U, Okay N, Oner Hortacsu O, Korean J. Chem. Eng., 25(2), 329 (2008)
Galinski EA, Louis P, Compatible solutes: ectoine production and gene expression, In: Oren A (ed), Microbiology and biogeochemistry of hyper-saline environments, CRC Press, Inc. Boca Raton, Fla., 187-202 (1999)
Lanyi JK, Bacteriological Reviewa, 38, 272 (1974)
Reistad R, Arch. Mikrobiol., 71, 353 (1970)
Ventosa A, Nieto JJ, Oren A, Microbiol. Mol. Biol. R., 62, 504 (1998)
Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K, J. Mol. Biol., 327, 347 (2003)
Yeung KY, Ruzzo WL, Bioinformatics, 17, 763 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로