ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 28, 2009
Accepted June 22, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Development of a hydrogen purifier with Pd-based composite membrane

Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall Vancouver, Canada V6T 1Z3 1Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 2Department of Chemical and Biological Engineering, Korea University, 5-Ga, Anam-dong Sungbuk-gu, Seoul 136-701, Korea 3Department of Advanced Materials Engineering, Kyonggi University, Suwon-city, Gyeonggi-do 443-760, Korea
deodor@kier.re.kr
Korean Journal of Chemical Engineering, January 2010, 27(1), 235-240(6), 10.1007/s11814-009-0310-8
downloadDownload PDF

Abstract

A hydrogen purifier equipped with Pd-Cu-Ni/PNS membranes has been developed to purify low-grade hydrogen and supply it to processes requiring high-purity hydrogen. The purifier does not include any purge system to flush out hydrogen from the membrane module to prevent membrane embrittlement because there is no α-β phase transition below the critical point of the Pd-H system, making the purifier simple. The hydrogen purifier was tested with three different grades of hydrogen, 90, 99 and 99.9%, to determine the effects of the grade of feed hydrogen on_x000D_ the hydrogen permeation behavior. A lower grade required a lower recovery ratio of the purifier to obtain a given relative hydrogen permeation flux. It was confirmed that the purifier can provide high-purity hydrogen to a gas chromatograph (GC) for carrier and make-up gases. A 75-day durability test provided evidence that the hydrogen purifier could be useful for extended periods as needed for commercial processes.

References

Koros WJ, Fleming GK, J. Membr. Sci., 83, 1 (1993)
Adhikari S, Fernando S, Ind. Eng. Chem. Res., 45(3), 875 (2006)
Peramanu S, Cox BG, Pruden BB, Int. J. Hydrog. Energy, 24(5), 405 (1999)
Phair JW, Badwal SPS, Sci. Technol. Adv. Mater., 7, 792 (2006)
Report of DOE Workshop on hydrogen separations and purification, Arlington, VA, September 8-9 (2004)
Uemiya S, Brief review of steam reforming using a metal membrane reactor, Topics in Catal., 29, 79 (2004)
Dolan MD, Dave NC, Ilyushechkin AY, Morpeth LD, McLennan KG, J. Membr. Sci., 285(1-2), 30 (2006)
Pandey P, Chauhan RS, Prog. Polym Sci., 26, 853 (2001)
Prabhu AK, Oyama ST, J. Membr. Sci., 176(2), 233 (2000)
Armor JN, J. Membr. Sci., 147(2), 217 (1998)
Adhikari S, Fernando S, Ind. Eng. Chem. Res., 45(3), 875 (2006)
Ryi SK, The study of Pd-Cu-Ni ternary alloyed hydrogen membranes deposited on porous nickel supports, Doctoral thesis, Korea University (2007)
Ryi SK, Park JS, Kim SH, Kim DW, Kim HK, J. Membr. Sci., 326(2), 589 (2009)
Goltsova MV, Artemenko YA, Zhirov GI, Zaitsev VI, Int. J. Hydrogen Energy, 27, 757 (2002)
Lewis FA, Int. J. Hydrogen Energy, 20, 587 (1995)
Goltsova MV, Int. J. Hydrogen Energy, 31, 223 (2006)
Katsnel’son AA, Knyazeva MA, Revkevich GP, Phys. Solid State, 38, 1132 (1997)
Uemiya S, Matsuda T, Kikuchi E, J. Membr. Sci., 56, 315 (1991)
Roa F, Way JD, McCormick RL, Paglieri SN, Chem. Eng. J., 93(1), 11 (2003)
Okazaki J, Tanaka DAP, Tanco MAL, Wakui Y, Mizukami F, Suzuki TM, J. Membr. Sci., 282(1-2), 370 (2006)
Zhang XL, Wang WP, Liu J, Sheng SS, Xiong GX, Yang WS, Thin Solid Films, 516(8), 1849 (2008)
Erickson AW, Paczewski RM, U.S. Patent 6,866,698 (2005)
Ryi SK, Park JS, Kim SH, Kim DW, Moon JW, J. Membr. Sci., 306(1-2), 261 (2007)
Peters TA, Stange M, Klette H, Bredesen R, J. Membr. Sci., 316(1-2), 119 (2008)
He GH, Mi YL, Yue PL, Chen GH, J. Membr. Sci., 153(2), 243 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로