Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 2, 2009
Accepted July 21, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A linear variation of the thermal expansivity with the isothermal compressibility for ammonia solid III near the melting point
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
hamit@metu.edu.tr
Korean Journal of Chemical Engineering, January 2010, 27(1), 249-252(4), 10.1007/s11814-009-0335-z
Download PDF
Abstract
The thermal expansivity α(p) is related to isothermal compressibility κ(T) at various pressures for constant temperatures of 254.6, 274 and 297.5 K close to the melting pressure in ammonia solid III. By analyzing the experimental data for κ(T) according to a power-law formula, a linear variation of α(p) with the κ(T) is established here close to the solid-liquid transition in ammonia. Anomalous behavior of thermal expansivity α(p) and the isothermal compressibility κ(T) near the melting pressure is indicative of the λ-type transition in ammonia solid III.
References
Hanson RC, Jordan MJ, J. Phys. Chem., 84, 1173 (1980)
Mills RL, Liebenberg DH, Pruzan P, J. Phys. Chem., 86, 5219 (1982)
Gauthier M, Pruzan P, Besson JM, Havel G, Syfosse G, Physica, 139&140 B, 218 (1984)
Nye CL, Medina FD, Phys. Rev. B, 32, 2510 (1985)
Salihoglu S, Tar O, Yurtseven H, Phase Trans., 72, 299 (2000)
Enginer Y, Salihoglu S, Yurtseven H, Mater. Chem. Phys., 73(1), 57 (2002)
Olovsson I, Templeton DH, Acta Crystallogr., 12, 832 (1959)
Reed JW, Harris PM, J. Chem. Phys., 35, 1730 (1961)
Eckert J, Mills RL, Satija S, J. Chem. Phys., 81, 6034 (1984)
Yurtseven H, J. Phys. Chem. A, 103(30), 5900 (1999)
Yurtseven H, Chin. J. Phys., 42, 209 (2004)
Pruzan P, Liebenberg DH, Mills RL, J. Phys. Chem. Solids, 47, 949 (1986)
Yurtseven H, Salihoglu S, Chin. J. Phys., 40, 416 (2002)
Yurtseven H, Int. J. Mod. Phys. B, 13, 2783 (1999)
Karacal H, Yurtseven H, J. Chem. Sci., 117, 677 (2005)
Pruzan P, Liebenberg DH, Mills RL, Phys. Rev. Lett., 18, 1200 (1982)
Mills RL, Liebenberg DH, Pruzan P, J. Phys. Chem., 86, 5219 (1982)
Gauthier M, Pruzan P, Besson JM, Havel G, Syfosse G, Physica, 139&140 B, 218 (1984)
Nye CL, Medina FD, Phys. Rev. B, 32, 2510 (1985)
Salihoglu S, Tar O, Yurtseven H, Phase Trans., 72, 299 (2000)
Enginer Y, Salihoglu S, Yurtseven H, Mater. Chem. Phys., 73(1), 57 (2002)
Olovsson I, Templeton DH, Acta Crystallogr., 12, 832 (1959)
Reed JW, Harris PM, J. Chem. Phys., 35, 1730 (1961)
Eckert J, Mills RL, Satija S, J. Chem. Phys., 81, 6034 (1984)
Yurtseven H, J. Phys. Chem. A, 103(30), 5900 (1999)
Yurtseven H, Chin. J. Phys., 42, 209 (2004)
Pruzan P, Liebenberg DH, Mills RL, J. Phys. Chem. Solids, 47, 949 (1986)
Yurtseven H, Salihoglu S, Chin. J. Phys., 40, 416 (2002)
Yurtseven H, Int. J. Mod. Phys. B, 13, 2783 (1999)
Karacal H, Yurtseven H, J. Chem. Sci., 117, 677 (2005)
Pruzan P, Liebenberg DH, Mills RL, Phys. Rev. Lett., 18, 1200 (1982)