ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 24, 2009
Accepted October 16, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Study on the activity coefficients and solubilities of amino acids in aqueous solutions with perturbed-chain statistical associating fluid theory

Department of Chemical Engineering, College of Engineering, Kangwon National University, 192-1, Hyoja-2 dong, Chuncheon 200-701, Korea
kichang@kangwon.ac.kr
Korean Journal of Chemical Engineering, January 2010, 27(1), 267-277(11), 10.1007/s11814-009-0351-z
downloadDownload PDF

Abstract

Perturbed-chain statistical associating fluid theory (PC-SAFT) was applied for modeling the thermodynamic properties of aqueous amino acid solutions. To account for the association phenomena of amino acids occurring in the aqueous solution, the zwitterionic forms of amino acids are assumed to be associating species with proton donor and acceptor sites. Also, in order to reduce the number of adjustable parameters of PC-SAFT equation of state (EoS) for amino acids from five to three, it is assumed that segment numbers of amino acids are linearly related with the molecular weight of amino acids, and the association volume parameters of amino acids can be set to a fixed value. Thus, 3-parameters of PC-SAFT EoS for amino acids were estimated by simultaneously fitting the activity coefficients of amino acid and densities data in the aqueous amino acid solutions. The PC-SAFT EoS with estimated 3-parameters of amino acid is found to well describe activity coefficients of amino acid and densities of the aqueous amino acid solutions. Also, this equation was used for predicting solubilities of amino acids as well as the water activities and osmotic coefficients in the aqueous amino acid solutions. The predicted values of these properties are in good agreement with the experimental data.

References

Subramanian G, Bioseparations and bioprocessing vol. 1, Wiley-VCH Verlag GmbH & Co., Weinheim (2007)
Ladisch MR, Bioseparations engineering: Principles, practice, and economics, John Wiley & Sons, Inc., New York (2001)
Nass KK, AIChE J., 34, 1257 (1988)
Xu X, Pinho SP, Macedo EA, Ind. Eng. Chem. Res., 43(12), 3200 (2004)
Pazuki GR, Nikookar M, Biochem. Eng. J., 28, 44 (2006)
Chen CC, Zhu Y, Evans LB, Biotechnol. Prog., 5, 111 (1989)
Peres AM, Macedo EA, Chem. Eng. Sci., 49(22), 3803 (1994)
Gupta RB, Heidemann RA, AIChE J., 36, 333 (1990)
Pinho SP, Silva CM, Macedo EA, Ind. Eng. Chem. Res., 33(5), 1341 (1994)
Kuramochi H, Noritomi H, Hoshino D, Nagahama K, Fluid Phase Equilib., 130(1-2), 117 (1997)
Pazuki GR, Taghikhani V, Vossoughi M, Ind. Eng. Chem. Res., 48(8), 4109 (2009)
Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 35(11), 4319 (1996)
Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 37(8), 3052 (1998)
Manssori GA, Carnahan NF, Starling KE, Leland TW, J. Chem. Phys., 54, 1523 (1971)
Barker JA, Henderson D, J. Chem. Phys., 47, 4714 (1967)
Liu JC, Lu JF, Li YG, Fluid Phase Equilib., 142(1-2), 67 (1998)
Mortazavi-Manesh S, Ghotbi C, Taghikhani V, J. Chem. Thermodyn., 35(1), 101 (2003)
Ghotbi C, Vera JH, Can. J. Chem. Eng., 79(4), 678 (2001)
Pazuki GR, Hosseinbeigi HR, Edalat M, Fluid Phase Equilib., 240(1), 40 (2006)
Beret S, Prausnitz JM, AIChE J., 21, 1123 (1975)
Park BH, Yoo KP, Lee CS, Fluid Phase Equilib., 212(1-2), 175 (2003)
Yeom MS, Yoo KP, Park BH, Lee CS, Fluid Phase Equilibria, 158-160, 143 (1999)
Chapman WG, Gubbins KE, Jackson G, Radosz M, Fluid Phase Equilibria, 52, 31 (1989)
Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990)
Ji PJ, Feng W, Tan TW, J. Chem. Thermodyn., 39(7), 1057 (2007)
Huang SH, Madosz M, Ind. Eng. Chem. Res., 30, 1994 (1991)
Fuchs D, Fischer J, Tumakaka F, Sadowski G, Ind. Eng. Chem. Res., 45(19), 6578 (2006)
Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
Cameretti LF, Sadowski G, Chem. Eng. Process., 47(6), 1018 (2008)
Jeffery GA, Saenger W, Hydrogen bonding in biological structures, Springer-Verlag, Berlin (1994)
Boublik T, J. Chem. Phys., 50, 471 (1970)
Tunon I, Silla E, Millot C, Martins-Costa MTC, Ruiz-Lopez MF, J. Phys. Chem. A, 102(45), 8673 (1998)
Chang J, Lenhoff AM, Sandler SI, J. Phys. Chem. B, 111(8), 2098 (2007)
Rossi S, Lo Nostro P, Lagi M, Ninham BW, Baglioni P, J. Phys. Chem. B, 111(35), 10510 (2007)
Troitino D, Bailey L, Peral F, J. Molecular Structure: THEOCHEM, 767, 131 (2006)
Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917 (1998)
Jin G, Donohue MD, Ind. Eng. Chem. Res., 30, 240 (1991)
Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquids, 5th ed., MacGraw-Hill Co., Inc., New York (2001)
Lee BS, Kim KC, Korean J. Chem. Eng., Accepted (2009)
Greenstein JP, Winitz M, Chemistry of the amino acids, vol. 1, Wiley, New York (1961)
Fasman GD, CRC handbook of biochemistry and molecular biology physical and chemical data, vol. 1, CRC Press, Florida (1976)
Barrett GC, Chemistry and biochemistry of the amino acids, Chapman and Hall, New York (1985)
Soto A, Arce A, Khoshkbarchi MK, Vera JH, Fluid Phase Equilibria, 158-160, 893 (1999)
Sadeghi R, Can. J. Chem., 86, 1126 (2008)
Ninni L, Meirelles AJA, Biotechnol. Prog., 17(4), 703 (2001)
Yan ZN, Wang JJ, Liu WB, Lu JS, Thermochim. Acta, 334(1-2), 17 (1999)
Yuan Q, Li ZF, Wang BH, J. Chem. Thermodyn., 38(1), 20 (2006)
Hakin AW, Copeland AK, Liu JL, Marriott RA, Preuss KE, J. Chem. Eng. Data, 42(1), 84 (1997)
Ziemer SP, Woolley EM, J. Chem. Thermodyn., 39(4), 645 (2007)
Sembira-Nahum Y, Apelblat A, Manzurola E, J. Sol. Chem., 37, 391 (2008)
Banipal TS, Kaur D, Banipal PK, J. Chem. Eng. Data, 49, 1236 (2004)
Bonner OD, J. Chem. Eng. Data, 27, 422 (1982)
Kuramochi H, Noritomi H, Hoshino D, Nagahama K, Biotechnol. Prog., 12(3), 371 (1996)
Sexton EL, Dunn MS, J. Phys. Chem., 51, 648 (1947)
Jin XZ, Chao KC, J. Chem. Eng. Data, 37, 199 (1992)
Hutchens JO, Figlio KM, Granito SM, J. Biol. Chem., 238, 1419 (1963)
Smith ERB, Smith PK, J. Biol. Chem., 117, 209 (1937)
Smith PK, Smith ERB, J. Biol. Chem., 121, 607 (1937)
Smith PK, Smith ERB, J. Biol. Chem., 132, 57 (1940)
Ellerton HD, Reinfelds G, Mulcahy DE, Dunlop PJ, J. Phys. Chem., 68, 398 (1964)
Needham TE, Paruta AN, Gerraughty RJ, J. Pharm. Sci., 60, 565 (1971)
Pradhan AA, Vera JH, Fluid Phase Equilib., 152(1), 121 (1998)
Brown MG, Rousseau RW, Biotechnol. Prog., 10(3), 253 (1994)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로