ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 2, 2009
Accepted September 27, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

An empirical near-critical correction for a quasi-chemical nonrandom lattice fluid

Department of Chemical and Biomolecular Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea 1Department of Cosmetic Science, Chungwoon University, San 29, Namjang-ri, Hongseong-eup, Hongseong-gun, Chungnam 350-701, Korea 2School of Chemical & Biological Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-744, Korea
Korean Journal of Chemical Engineering, January 2010, 27(1), 289-298(10), 10.1007/s11814-009-0350-0
downloadDownload PDF

Abstract

This paper proposes a simple empirical correction to improve the near-critical volumetric behavior of a classical equation of state (EOS) which overpredicts the critical point. The focus is on the alternative representation of long-range density fluctuation, an effect neglected in classical EOS, in terms of molecular clustering. To formulate the molecular clustering of interest, the Veytsman statistics is extended and fluctuation parameter is explicitly obtained as a solution to the quadratic equation. The proposed contribution was combined with a quasi-chemical nonrandom lattice fluid (QLF), which overpredicts the critical point. The combined model was found to require three clustering parameters besides three classical parameters and tested against vapor-liquid equilibrium data consisting of 43 nonpolar and polar components. The calculation results showed that the combined model satisfactorily represents the flattened part of the critical isotherm curve for methane as well as the top of the coexistence curve for the tested components.

References

Soave G, Chem. Eng. Sci., 27, 1197 (1972)
Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990)
Anisimov MA, Povodyrev AA, Sengers JV, Fluid Phase Equilib., 158-160, 537 (1999)
Sengers JV, International union of pure and applied chemistry, Commission on Thermodynamics., Equations of state for fluids and fluid mixtures, 1st ed., Elsevier, Amsterdam, New York (2000)
Chou GF, Prausnitz JM, AlChE J., 35, 1487 (1989)
Kraska T, Deiters UK, Int. J. Thermophys., 15, 261 (1994)
Kedge CJ, Trebble MA, Fluid Phase Equilib., 194-197, 401 (2002)
Kiselev SB, Fluid Phase Equilib., 147(1-2), 7 (1998)
Jiang JW, Prausnitz JM, J. Chem. Phys., 111(13), 5964 (1999)
Wilson KG, Physical Review B, 4, 3174 (1971)
Wilson KG, Physical Review B, 4, 3184 (1971)
Liming WS, John AW, J. Chem. Phys., 96, 4559 (1992)
White JA, Zhang S, J. Chem. Phys., 103(5), 1922 (1995)
Landau LD, Lifshitz EM, Pitaevskii LP, Statistical physics, 3d rev. and enl. ed., Pergamon Press, Oxford, New York (1980)
Fornasiero F, Lue L, Bertucco A, AIChE J., 45(4), 906 (1999)
Mi J, Zhong C, Li YG, J. Chen, Chem. Phys., 305, 37 (2004)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
Mi JG, Tang YP, Zhong CL, Li YG, J. Phys. Chem. B, 109(43), 20546 (2005)
Heidemann RA, Prausnitz JM, Proceedings of the National Academy of Sciences, 73, 1773 (1976)
Wertheim MS, J. Stat. Phys., 35, 35 (1984)
Wertheim MS, J. Stat. Phys., 35, 19 (1984)
Veytsman BA, J. Phys. Chem., 94, 8499 (1990)
Pfund DM, Zemanian TS, Linehan JC, Fulton JL, Yonker CR, J. Phys. Chem., 98(46), 11846 (1994)
Tucker SC, Chem. Rev., 99(2), 391 (1999)
Tucker SC, Maddox MW, J. Phys. Chem. B, 102(14), 2437 (1998)
Lee CS, Kang JW, Lee JH, Yoo KP, Fluid Phase Equilib., 265(1-2), 215 (2008)
Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79 (2006)
Sengers JMHL, Fluid Phase Equilib., 158-160, 3 (1999)
Panayiotou C, Sanchez IC, J. Phys. Chem., 95, 10090 (1991)
Kedge CJ, Trebble MA, Fluid Phase Equilib., 217, 257 (2004)
Perry RH, Green DW, Maloney JO, Perry’s chemical engineers’ handbook, 7th ed., McGraw-Hill, New York (1997)
Handel G, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 24, 685 (1992)
Derawi SO, Michelsen ML, Kontogeorgis GM, Stenby EH, Fluid Phase Equilib., 209(2), 163 (2003)
Gupta RB, Johnston KP, Fluid Phase Equilib., 99, 135 (1994)
Kiselev SB, Ely JF, Chem. Eng. Sci., 61(15), 5107 (2006)
Vargaftik NB, Vinogradov YK, Yargin VS, Handbook of physical properties of liquids and gases: Pure substances and mixtures, 3rd augm. and rev. ed., Begell House, New York (1996)
Kleinrahm R, Wagner W, J. Chem. Thermodyn., 18, 739 (1986)
Smith BD, Srivastava R, Thermodynamic data for pure compounds, Elsevier, Distributors for the U.S. and Canada, Elsevier Science Pub. Co., Amsterdam, New York, U.S.A. (1986)
Daubert TE, Danner RP, Design Institute for Physical Property Data (U.S.), Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Pub. Corp., New York (1989)
Nowak P, Kleinrahm R, Wagner W, J. Chem. Thermodyn., 28(12), 1441 (1996)
Ihmels EC, Lemmon EW, Fluid Phase Equilib., 260(1), 36 (2007)
Braker W, Mossman AL, Matheson Company inc., Matheson gas data book, 6th ed., Matheson, Lyndhurst, NJ (1980)
Wu J, Liu Z, Pan J, Zhao X, J. Chem. Eng. Data, 49, 32 (2004)
Wu J, Liu Z, Wang B, Pan J, J. Chem. Eng. Data, 49, 704 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로