ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 24, 2009
Accepted August 13, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Reduction of lean NO2 with diesel soot over metal-exchanged ZSM5, perovskite and γ-alumina catalysts

Research Institute of Clean Chemical Engineering Systems, Korea University, 1-5, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea 1Department of Chemical & Biological Engineering, Korea University, 1-5, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
Korean Journal of Chemical Engineering, February 2010, 27(2), 452-458(7), 10.1007/s11814-010-0075-0
downloadDownload PDF

Abstract

The catalytic performances of metal-exchanged ZSM5, perovskite and γ-alumina catalysts for the reduction of nitrogen dioxide (NO2) by diesel soot were investigated. The reaction tests were performed through temperatureprogrammed reaction (TPR), in which NO2 and O2 were passed through a fixed bed of catalyst-soot mixture. On the three types of catalyst, NO2 was reduced to N2 by model soot (Printex-U) and most of the soot was converted into CO2. Pt-, Cu- and Co-exchanged ZSM5 catalysts exhibited reduction activities with conversions of NO2 into N2 of about_x000D_ 20%. Among the perovskite catalysts tested, La0.9K0.1FeO3 showed a 32% conversion of NO2 into N2. The catalytic activities of the perovskite catalysts were largely influenced by the number and stability of oxygen vacancies. For the γ-alumina catalyst, the peak reduction activity appeared at a relatively high temperature of around 500 ℃, but the NO2 reduction was more effective than the NO reduction, in contrast to the results of the ZSM-5 and perovskite catalysts.

References

Bouchez M, Denenthon JB, SAE Technical Paper, 2000-01-0472 (2000)
Twigg MV, Appl. Catal. B: Environ., 70(1-4), 2 (2007)
Kim MH, Korean J. Chem. Eng., 24(2), 209 (2007)
Liu ST, Obuchi A, Uchisawa J, Nanba T, Kushiyama S, Appl. Catal. B: Environ., 37(4), 309 (2002)
van Setten BAAL, Makkee M, Moulijn JA, Catal. Rev.-Sci. Eng., 43(4), 489 (2001)
Setiabudi A, Makkee M, Moulijn JA, Appl. Catal. B: Environ., 50(3), 185 (2004)
Hoard JW, SAE Technical Paper, 2001-01-0185 (2001)
Lee DW, Lee JH, Chun BH, Lee KY, Plasma Chem. Plasma Process., 23, 519 (2003)
Matyshak VA, Sadykov VA, Kuznetsova TG, Ukharskii AA, Khomenko TI, Bykhovskii MY, Sil’chenkova ON, Korchak VN, Kinet. Catal., 47, 400 (2006)
Azambre B, Collura S, Trichard JM, Weber JV, Appl. Surf. Sci., 253(4), 2296 (2006)
Teraoka Y, Nakano K, Kagawa S, Shangguan W, Appl. Catal. B: Env., 5, L181 (1995)
Teraoka Y, Nakano K, Shangguan W, Kagawa S, Catal. Today, 27(1-2), 107 (1996)
Shangguan WF, Teraoka Y, Kagawa S, Appl. Catal. B: Env., 12, 237 (1996)
Hong SS, Lee GD, Park JW, Park DW, Cho KM, Oh KJ, Korean J. Chem. Eng., 14(6), 491 (1997)
Fino D, Fino P, Saracco G, Specchia V, Appl. Catal. B: Environ., 43(3), 243 (2003)
Hong SS, Lee GD, Catal. Today, 63(2-4), 397 (2000)
Biamino S, Fino P, Fino D, Russo N, Badini C, Appl. Catal. B: Environ., 61(3-4), 297 (2005)
Wang H, Zhao Z, Xu CM, Liu J, Catal. Lett., 102(3-4), 251 (2005)
An HM, McGinn PJ, Appl. Catal. B: Environ., 62(1-2), 46 (2006)
Liu J, Zhao Z, Xu CM, Duan AJ, Appl. Catal. B: Environ., 78(1-2), 61 (2008)
Dhakad M, Rayalu SS, Kumar R, Doggali P, Bakardjieva S, Subrt J, Mitsuhashi T, Haneda H, Labhsetwar N, Catal. Lett., 121(1-2), 137 (2008)
Fino D, Russo N, Badini C, Saracco G, Specchia V, Korean J. Chem. Eng., 20(3), 451 (2003)
Kim MH, Nam IS, Korean J. Chem. Eng., 18(5), 725 (2001)
Anpo M, Matsuoka M, Yamashita H, Ju WS, Park SE, Shul YG, J. Ind. Eng. Chem., 6(3), 133 (2000)
Kim MH, Nam IS, Kim YG, Korean J. Chem. Eng., 16(1), 139 (1999)
Lee HT, Rhee HK, Korean J. Chem. Eng., 19(4), 574 (2002)
Iwamoto M, Symposium on catalytic technology for the removal of nitrogen oxides, pp. 17-22, Catalysis Society of Japan (1990)
Lee DK, Korean J. Chem. Eng., 23(4), 547 (2006)
Nejar N, Illan-Gomez MJ, Catal. Today, 119(1-4), 262 (2007)
Ogura M, Morozumi K, Elangovan SP, Tanada H, Andoc H, Okubo T, Appl. Catal. B: Environ., 77(3-4), 294 (2008)
Burch R, Halpin E, Sullivan JA, Appl. Catal. B: Environ., 17(1-2), 115 (1998)
Park PW, Rockwood JE, Boyer CL, Ragle C, Lou Balmer-Millar M, Aardahl CL, Habeger CF, Rappe KG, Tran DN, SAE Technical Paper, 2001-01-3569 (2001)
Miller JT, Glusker E, Peddi R, Zheng T, Regalbuto JR, Catal. Lett., 51(1-2), 15 (1998)
Voorhoeve RJH, Remeika JP, Trimble LE, Cooper AS, Disalvo FJ, Gallagher PK, J. Solid State Chem., 14, 395 (1975)
Tejuka LG, Fierro JLG, Properties and applications of perovskite-type oxides, Marcel Dekker, New York (1993)
Chughtai AR, Welch WF, Smith DM, Carbon, 28, 411 (1990)
Smith DM, Akhter MS, Jassim JA, Sergides CA, Welch WF, Chughtai AR, Aerosol Sci. Technol., 10, 311 (1989)
Lur’e BA, Mikhno AV, Kinet. Catal., 38, 490 (1997)
Teraoka Y, Harada T, Kagawa S, J. Chem. Soc., Faraday Trans., 94, 1887 (1998)
Fino D, Fino P, Saracco G, Specchia V, Appl. Catal. B: Environ., 43(3), 243 (2003)
Centi G, Perathoner S, Biglino D, Giamello E, J. Catal., 151, 75 (1995)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로