Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 9, 2009
Accepted December 16, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend
Department of Chemical Engineering, Kyungbuk National University, Daegu 702-701, Korea 1Div. of Life & Environmental Science, Daegu University, Kyungsan, Gyeongbuk 712-714, Korea 2Department of Chemical Engineering, Daegu University, Kyungsan, Gyeongbuk 712-714, Korea
khlim@daegu.ac.kr
Korean Journal of Chemical Engineering, February 2010, 27(2), 524-530(7), 10.1007/s11814-010-0113-y
Download PDF
Abstract
The molecular weight and thermal properties of unfractionated by-product polyolefin wax (wax K) from a naphtha cracking unit, fractionated commercial paraffin wax (wax J) and their blend (wax M) were evaluated and were compared with each other using differential scanning calorimetry (DSC), normal and high-temperature gel permeation chromatography (GPC), and wide-angle X-ray diffraction (WAXD). Such properties as molecular weight distribution, melting temperature and degree of crystallization were altered by blending wax K with wax J. By blending with two parts of wax K and one part of wax J to prepare wax M, Mw of wax K was shifted, by half, to that of wax J in order to approach that of wax M, whereas the Mn of wax K remains almost unaltered to become that of wax M. In particular the effect of blending of wax K and wax J turned out co-crystallization for the sharper lower-melting-temperature endothermic peak of the blend, indicating narrower molecular distribution, than that of wax K at the melting temperature shifted even below that of wax J. The total degree of crystallinity for the blend, wax M, turns out less than that before blending wax K with wax J, which may be attributed to the effect of co-crystallization due to blending.
Keywords
References
Wu T, Li Y, Wu G, Polymer, 46(10), 3472 (2005)
Krupa I, Luyt AS, Polym. Deg. Stab., 70, 111 (2000)
Mtshali TN, Krupa I, Luyt AS, Thermochim. Acta, 380(1), 47 (2001)
Fonseca CA, Harrison IR, Thermochim. Acta, 313(1), 37 (1998)
Gao JG, Yu MS, Li ZT, European Polymer Journal, 40, 1533 (2004)
Ashbaugh HS, Radulescu A, Prud'homme RK, Schwahn D, Richter D, Fetters LJ, Macromolecules, 35(18), 7044 (2002)
Radulescu A, Schwahn D, Richter D, Fetters LJ, J. Appl. Crystal., 36, 995 (2003)
Radulescu A, Schwahn D, Monkenbusch M, Richter D, Fetters LJ, Physica B. Condensed Matter, 350, e927 (2004)
Hlangothi SP, Krupa I, Djokovi V, Luyt AS, Polym. Deg. Stab., 79, 53 (2003)
Krupa I, Luyt AS, Polym. Deg. Stab., 73, 157 (2001)
Krupa I, Luyt AS, Polymer, 42(17), 7285 (2001)
Wilkinson AN, Tattum SB, Ryan AJ, Polymer, 38(8), 1923 (1997)
Regin AF, Solanki SC, Saini JS, Renew. Energy, 31, 2025 (2006)
Sharma A, Sharma SD, Buddhi D, Energy Conv. Manag., 43(14), 1923 (2002)
Rosen SL, Fundamental principles of polymeric materials (2nd Ed.), John Wiley & Sons, Inc., Singapore (1993)
Chatterjee J, Haik Y, Chen CJ, J. Mag. Mag. Mater., 246, 382 (2002)
Ozawa T, Polymer, 12, 150 (1971)
Umare PS, Antony R, Gopalakrishnan K, Tembe GL, Trivedi B, J. Mol. Catal. A-Chem., 242(1-2), 141 (2005)
Ryan AJ, Stanford JL, Bras W, Nye TM, Polymer, 38(4), 759 (1997)
Van Krevelen DW, Hoftyzer PJ, Properties of polymers: Their estimation and correlation with chemical structure (2nd Ed.), Elsevier Scientific Publishing Company, Amsterdam (1976)
Kim JK, Kim BK, J. Jpn. Soc. Powder/Powder Metall., 46, 823 (1999)
Krupa I, Luyt AS, Polym. Deg. Stab., 70, 111 (2000)
Mtshali TN, Krupa I, Luyt AS, Thermochim. Acta, 380(1), 47 (2001)
Fonseca CA, Harrison IR, Thermochim. Acta, 313(1), 37 (1998)
Gao JG, Yu MS, Li ZT, European Polymer Journal, 40, 1533 (2004)
Ashbaugh HS, Radulescu A, Prud'homme RK, Schwahn D, Richter D, Fetters LJ, Macromolecules, 35(18), 7044 (2002)
Radulescu A, Schwahn D, Richter D, Fetters LJ, J. Appl. Crystal., 36, 995 (2003)
Radulescu A, Schwahn D, Monkenbusch M, Richter D, Fetters LJ, Physica B. Condensed Matter, 350, e927 (2004)
Hlangothi SP, Krupa I, Djokovi V, Luyt AS, Polym. Deg. Stab., 79, 53 (2003)
Krupa I, Luyt AS, Polym. Deg. Stab., 73, 157 (2001)
Krupa I, Luyt AS, Polymer, 42(17), 7285 (2001)
Wilkinson AN, Tattum SB, Ryan AJ, Polymer, 38(8), 1923 (1997)
Regin AF, Solanki SC, Saini JS, Renew. Energy, 31, 2025 (2006)
Sharma A, Sharma SD, Buddhi D, Energy Conv. Manag., 43(14), 1923 (2002)
Rosen SL, Fundamental principles of polymeric materials (2nd Ed.), John Wiley & Sons, Inc., Singapore (1993)
Chatterjee J, Haik Y, Chen CJ, J. Mag. Mag. Mater., 246, 382 (2002)
Ozawa T, Polymer, 12, 150 (1971)
Umare PS, Antony R, Gopalakrishnan K, Tembe GL, Trivedi B, J. Mol. Catal. A-Chem., 242(1-2), 141 (2005)
Ryan AJ, Stanford JL, Bras W, Nye TM, Polymer, 38(4), 759 (1997)
Van Krevelen DW, Hoftyzer PJ, Properties of polymers: Their estimation and correlation with chemical structure (2nd Ed.), Elsevier Scientific Publishing Company, Amsterdam (1976)
Kim JK, Kim BK, J. Jpn. Soc. Powder/Powder Metall., 46, 823 (1999)