ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 10, 2009
Accepted July 28, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A modelling study on hydrolysis of whey lactose and stability of β-galactosidase

Department of Chemical Engineering, Yildiz Technical University, Davutpa a Campus, 34210, Esenler/Istanbul, Turkey
Korean Journal of Chemical Engineering, February 2010, 27(2), 536-545(10), 10.1007/s11814-010-0062-5
downloadDownload PDF

Abstract

In the present study, the effect of process conditions on whey lactose hydrolysis and enzyme inactivation were investigated. The experiments were carried out in 250 mL of 25 mM phosphate buffer solution by using β-galactosidase produced from Kluyveromyces marxianus lactis in a batch reactor system. The degree of lactose hydrolysis (%) and residual enzyme activity (%) against time were investigated versus lactose concentration, enzyme concentration, temperature and pH. The mathematical models were derived from the experimental data to show the effect of_x000D_ process conditions on lactose hydrolysis and residual enzyme activity (in the presence and absence of lactose). At the optimum process conditions obtained (50 g/L of lactose concentration, 1 mL/L of enzyme concentration, 37 ℃ of temperature and pH 6.5), 81% of lactose was hydrolyzed and enzyme lost its activity by 32%. The activation energy for hydrolysis reaction (EA) and the enzymatic inactivation energy (ED) were calculated as 52.7 kJ/mol and 96.7 kJ/mol._x000D_ Mathematical models at various process conditions have been confirmed with the experimental results.

References

Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 33(2-3), 199 (2003)
Curcio S, Calabro V, Iorio G, J. Membr. Sci., 273(1-2), 129 (2006)
Tanriseven A, Dogan S, Process Biochem., 38, 27 (2002)
Ladero M, Santos A, Garcia JL, Carrascosa AV, Pessela BCC, Garcia-Ochoa F, Enzyme Microb. Technol., 30(3), 392 (2002)
Santos A, Ladero M, Garcia-Ochoa F, Enzyme Microb. Technol., 22(7), 558 (1998)
Novalin S, Neuhaus W, Kulbe KD, J. Biotechnol., 119, 212 (2005)
Szczodrak J, J. Mol. Catal. B-Enzym, 10, 631 (2000)
Al-Muftah AE, Abu-Reesh IM, Biochem. Eng. J., 27, 167 (2005)
Burin L, Jouppila K, Roos YH, Kansikas J, Buera MP, Int. Dairy J., 14, 517 (2004)
Kim JI, Choi DY, Row KH, Korean J. Chem. Eng., 20(3), 538 (2003)
Jurado E, Camacho F, Luzon G, Vicaria JM, Enzyme Microb. Technol., 31(3), 300 (2002)
Roy I, Gupta MN, Process Biochem., 39, 325 (2003)
Ladero M, Santos A, Garcia JL, Garcia-Ochoa F, Enzyme Microb. Technol., 29(2-3), 181 (2001)
Ladero M, Santos A, Garcia-Ochoa F, Enzyme Microb. Technol., 27(8), 583 (2000)
Vasiljevic T, Jelen P, Innov. Food Sci. Emerg. Technol., 3, 175 (2002)
Carrara CR, Rubiolo AC, Chem. Eng. J., 65, 93 (1997)
Papayannakos N, Markas G, Kekos D, Chem. Eng. J., 52, B1 (1993)
Yang ST, Okos MR, Biotechnol. Bioeng., 33, 873 (1989)
Nielsen DA, Chou J, MacKrell AJ, Casadaban MJ, Steiner DF, Proc. Natl. Acad. Sci. USA, 80, 5198 (1983)
Craven GR, Steers EJ, Anfinsen CB, J. Biol. Chem., 240, 2468 (1965)
Mariotti MP, Yamanaka H, Araujo AR, Trevisan HC, Braz. Arch. Biol. Technol., 51, 1233 (2008)
Li XM, Zhou QZK, Chen XD, Chem. Eng. Process., 46(5), 497 (2007)
Bergmeyer HU, Bernt E, In determination with glucose oxidase and peroxsidase, In: Bergmeyer HU, editor, Methods of enzymatic analysis, 2nd ed., Academic Press, New York (1974)
Toscano G, Pirozzi D, Maremonti M, Greco G, Biotechnol. Bioeng., 44(6), 682 (1994)
Sadana A, Henley JM, Biotechnol. Bioeng., 30, 717 (1987)
Di Serio M, Maturo C, De Alteriis E, Parascandola P, Tesser R, Santacesaria E, Catal. Today, 79-80, 333 (2003)
Haider T, Husian Q, J. Sci. Food Agr., 87, 1278 (2007)
Haider T, Husain Q, Chem. Eng. Process., 48(1), 576 (2009)
Sener N, Apar DK, Ozbek B, Process Biochem., 41, 1498 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로